Video captures cellular 'workhorses' in action

Apr 28, 2011

Scientists at Yale University and in Grenoble France have succeeded in creating a movie showing the breakup of actin filaments, the thread-like structures inside cells that are crucial to their movement, maintenance and division.

Actin filaments are the muscular workhorses of our — pushing on membranes to move cells to the proper location within tissues and applying pressure within the interior to keep all working parts of the cell where they need to be. These filaments do their jobs through a mysterious process of continual splitting and reassembly.

This video is not supported by your browser at this time.
Thread-like actin filaments, strong as commercial plastic, are the muscular workhorses of our cells -- pushing on membranes to move cells to the proper location within tissues and applying pressure within the interior to keep all working parts of the cell where they need to be. These filaments do their jobs through a mysterious process of continual splitting and reassembly. In the movie, filaments are caught in the act of disassembly. Filament ends are marked by red and green arrows and the severing events are indicated by pink arrows and yellow flashes. The images answer long-standing questions about just where these breaks occur. Credit: Cristian Suarez

are assembled and disassembled in a complex series of molecular events, known to be influenced by the protein cofilin. However, it was not known exactly where these breaks occur along the filaments, made up of actins monomer, which are as strong as commercial plastic.

Enrique De La Cruz, associate professor of molecular biophysics and biochemistry at Yale, and his French colleagues used fluorescent stains of cofilin which enabled them to create movies of this molecular disassembly. They used technology called total internal reflection fluorescence microscopy peer into the inner workings of the cell.

Explore further: Researchers capture picture of microRNA in action

More information: The work is published in the April 28 issue of Current Biology.

Related Stories

A budding role for a cellular dynamo

Feb 18, 2009

Actin, a globular protein found in all eukaryotic cells, is a workhorse that varies remarkably little from baker's yeast to the human body. Part of the cytoskeleton, actin assembles into networks of filaments that give the ...

Using a light touch to measure protein bonds

Jun 30, 2008

MIT researchers have developed a novel technique to measure the strength of the bonds between two protein molecules important in cell machinery: Gently tugging them apart with light beams.

How actin networks are actin'

Jan 02, 2008

Dynamic networks of growing actin filaments are critical for many cellular processes, including cell migration, intracellular transport, and the recovery of proteins from the cell surface. In this week’s issue of the open-access ...

Recommended for you

Researchers capture picture of microRNA in action

13 hours ago

Biologists at The Scripps Research Institute (TSRI) have described the atomic-level workings of "microRNA" molecules, which control the expression of genes in all animals and plants.

Blocking a fork in the road to DNA replication

15 hours ago

A team of Whitehead Institute scientists has discovered the surprising manner in which an enigmatic protein known as SUUR acts to control gene copy number during DNA replication. It's a finding that could shed new light on ...

Cell division, minus the cells

18 hours ago

(Phys.org) —The process of cell division is central to life. The last stage, when two daughter cells split from each other, has fascinated scientists since the dawn of cell biology in the Victorian era. ...

A new method simplifies the analysis of RNA structure

18 hours ago

To understand the function of an RNA molecule, similar to the better-known DNA and vital for cell metabolism, we need to know its three-dimensional structure. Unfortunately, establishing the shape of an RNA ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.