UGA studies explain spread of invasive ladybugs

April 1, 2011

A University of Georgia researcher studying invasive ladybugs has developed new models that help explain how these insects have spread so quickly and their potential impacts on native species.

In recent years, some people have noticed swarms of amassing in the fall, even infesting their homes. These are Asian lady beetles, native to eastern Asia, introduced to the U.S. as a biocontrol for aphids and have since spread throughout the country and into Canada. When he found the beetles in his own home, Assistant Research Scientist Richard Hall, of the UGA Odum School of Ecology, was motivated to learn more about them.

Hall knew that the Asian lady beetle had only recently, in 2004, arrived in his native England, and is already found all over the U.K. Data collected as part of a citizen science effort based at Cambridge University shows it to be one of the fastest documented invasions ever by an insect. He also knew that in the U.S., the Asian lady beetle has excluded many indigenous ladybugs from parts of their original range.

"I wanted to know how this insect could have invaded the U.K. so quickly," Hall said. "And I also wanted to know what the impacts on native species are likely to be." He has just published two new papers that explore these questions in the journals Biology Letters and Ecology.

"What makes this insect a good also makes it a good invader," Hall said. "It has multiple generations per year, compared to just one for native British ladybugs. It tolerates a wide range of . And it has a generalist diet—it likes aphids, but it will also eat other ladybugs. In other words, it eats its own competition."

Hall explained that when an invader expands into an open niche, with no native competitors present, invasion happens faster than if a competitor was already there; native competitors slow the rate of invasion. If an invader can eat the native competitor, however, it not only gains a source of nutrition but also reduces competition for lower-level food resources. If the resource benefit is a good one—the native competitor is a rich source of nutrition—the invader that eats its competition can invade even faster than if there were no competition at all. This may be the case with the Asian lady beetle.

Hall developed a model, published in the current issue of Biology Letters, that explains his findings and predicts that invasive species that feed on both lower-level food sources and species that compete for these same food sources will be more successful, and spread faster, than those that only feed on lower-level sources.

Predicting the potential impacts on native species was more complicated.

Native ladybugs in the U.K. have a natural enemy, a parasitoid wasp that lays eggs in adult ladybugs. When the eggs hatch, the larvae emerge and use the ladybug as both food and protection against predators. These wasps are now parasitizing Asian lady beetles in the U.K.

In a paper in the February 2011 issue of the journal Ecology, Hall described a model he developed to explain the interaction between the three species—invasive ladybug, native ladybug and the parasitoid wasp that is their common predator—and predict effects.

"The shared natural enemy changes the equation," said Hall. "There are a couple of possible outcomes. If the wasp prefers to lay its eggs in the invader, that might allow the native species to persist. But the invader may turn out to be a 'sink' host—the wasps may have less reproductive success on the invasive ladybugs, since they didn't co-evolve. In that case, you could lose both the native ladybug and its native predator, the ladybug due to predation and competition by the invader and the wasp due to reproductive failure."

Hall said that both models could be applied to other species where the invader preys on, as well as competes with, a . "It is important to take into account the effects of a natural enemy on that interaction in order to avoid incorrect predictions about which species will persist," he said. "And accurate predictions are crucial for developing successful management strategies."

Explore further: Ladybugs may be cute, but watch out when they get near wine

Related Stories

Ladybugs may be cute, but watch out when they get near wine

March 25, 2007

Ladybugs may look pretty but they also have a dark side. In some places, the polka-dotted insects have become a nuisance by invading homes and crops, including some vineyards. To make matters worse, the bugs produce a foul-smelling ...

NY researchers breeding rare native ladybugs

September 4, 2009

(AP) -- A year after they launched a nationwide search for dwindling native ladybugs, New York researchers are breeding colonies of them from insects found by citizen scientists in Oregon and Colorado.

Recommended for you

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Insect DNA extracted, sequenced from black widow spider web

November 25, 2015

Scientists extracted DNA from spider webs to identify the web's spider architect and the prey that crossed it, according to this proof-of-concept study published November 25, 2015 in the open-access journal PLOS ONE by Charles ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.