Tackling the big unanswered problems

April 28, 2011

(PhysOrg.com) -- Scientific research is known to happen slowly but the timeframes pale into insignificance compared to the years spent on some of the great unsolved Maths problems.

One of these problems is the subject of a Marsden funded project for which Victoria University Dillon Mayhew is principal investigator.  Dr. Mayhew estimates that, despite working with a team of five collaborators, the central problem of the project may not be cracked until 2020, if at all.

One of those team members is Professor Geoff Whittle who is also part of a separate  collaborative research effort that has already spent 12 years working to prove Rota’s Conjecture. That was put forward by Italian mathematician Gian-Carlo Rota in the early 1970s and is one of the central problems in matroid geometry. Professor Whittle’s team is close to achieving its goal although close in the world of mathematics means at least a few more years.

Dr. Mayhew’s research is also in the field of matroid theory which is a more modern form of geometry than the Euclidian geometry most of us studied at secondary school.

Rather than focusing on distance and angles, matroid theory concentrates on a finite number of points which don’t change under projection – three points, for example, are always on a line no matter how you project the line.

Matroids live under the surface of ‘a tonne of different mathematical objects, explains Dr Mayhew but are often bound together by a matrix or array of numbers. But the matrices he is studying aren’t part of the rational number system that we use every day.

Instead they come from one of an infinite number of less well known systems. These include Galois Fields, or finite fields, which contain a finite number of elements, sometimes as few as two. 

"For each number system you get a different family of matroids,” says Dr. Mayhew. “Mathematicians have spent decades on the huge task of characterising each family of matroids for each number system."

One discovery that has made the task easier is that obstacles exist which mean certain matroids will never arise in a particular number system. In 1958, researchers proved that the two number system has one obstacle and, 21 years later, proof came that there are four obstacles in the three number system. In 2000, the four number system was found to have seven obstacles.

"The length of time between the results was not because we were being lazy, it just takes that long to figure it out," says Dr. Mayhew.

And here Rota’s Conjecture comes in. His yet to be proven theory is that there are a finite number of obstacles for every finite number system.

While work continues on that question, Dr Mayhew’s team is tackling the five number system and trying to work out how many obstacles it contains.

Using computers, they have worked out that it is at least 564. “Matroids are stubborn little creatures and they tend to grow explosively,” says Dr. Mayhew.

"This one is much more difficult to figure out than the earlier ones. We know that 564 is the lowest number but we have no idea of the upper bound. If it turns out to be billions, even the most advanced computer won’t be able to find them all."

And that’s why the team can’t be sure it will succeed in its goal although Dr. Mayhew says they’re unlikely to even consider giving up before doing another decade’s research.

As to how mathematicians solve these thorny problems, Dr. Mayhew says they brainstorm just as many other groups do.

"We sit around and think hard, stare at a whiteboard, draws things, argue, write results and get them published, and meet regularly with the other 30 or 40 mathematicians around the world working full time in matroid research."

Dr. Mayhew, who is also an accomplished French Horn player, says the most satisfying part of his work is bringing the unknown into the known.

"We are pushing ourselves and the technology we use as far as we can go to discover new and beautiful things."

Explore further: Simple beauties of math: Harvard professor views nature itself through geometry's clear lens

Related Stories

Computer scientists make progress on math puzzle

October 28, 2010

(PhysOrg.com) -- Two UT Dallas computer scientists have made progress on a nearly 4-decade-old mathematical puzzle, producing a proof that renowned Stanford computer scientist Don Knuth called "amazing" in his communication ...

Wireless broadband coming to the bush

November 3, 2010

A major CSIRO breakthrough in wireless technology designed to bring broadband to people living beyond the optical fibre network, will be unveiled in Sydney tomorrow.

Modern society made up of all types

November 4, 2010

Modern society has an intense interest in classifying people into ‘types’, according to a University of Melbourne Cultural Historian, leading to potentially catastrophic life-changing outcomes for those typed – ...

King of the (lunar) road

March 30, 2011

The University of Alabama in Huntsville’s moon buggy may not go from 0 to 60 in five seconds, but it can handle the lunar regolith like nobody’s business. And that’s no small feat, says mechanical and aerospace ...

Recommended for you

Biologists trace how human innovation impacts tool evolution

November 24, 2015

Many animals exhibit learned behaviors, but humans are unique in their capacity to build on existing knowledge to make new innovations. Understanding the patterns of how new generations of tools emerged in prehistoric societies, ...

How experienced buyers can mitigate economic bubbles

November 19, 2015

(Phys.org)—Over the last decade, many people got a tough primer on the effects of economic bubbles, as the bursting of the 2007-2008 housing bubble sent shockwaves through most of the major world economies. But property ...

First Londoners were multi-ethnic mix: museum

November 23, 2015

A DNA analysis of four ancient Roman skeletons found in London shows the first inhabitants of the city were a multi-ethnic mix similar to contemporary Londoners, the Museum of London said on Monday.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.