Streptococcus enzyme could compete with toothbrushes, dental floss

Apr 03, 2011

(PhysOrg.com) -- Investigators from Japan show in vitro that the bacterium Streptococcus salivarius, a non-biofilm forming, and otherwise harmless inhabitant of the human mouth, actually inhibits the formation of dental biofilms, otherwise known as plaque. Two enzymes this bacteria produces are responsible for this inhibition. The research is published in the March 2011 issue of the journal Applied and Environmental Microbiology.

“FruA may be useful for prevention of dental caries,” corresponding author Hidenobu Senpuku, of the National Institute of Infectious Diseases, Tokyo says of one of the enzymes. “The activity of the inhibitors was elevated in the presence of sucrose, and the inhibitory effects were dependent on the sucrose concentration in the formation assay medium,” the researchers write.

“We show that FruA produced by S. salivarius inhibited S. mutans biofilm formation completely in the in vitro assay supplemented with sucrose,” the researchers write. S. salivarius is the primary species of bacteria inhabiting the mouth, according to the report.

The authors suggest that FruA may actually regulate microbial pathogenicity in the oral cavity. They found that a commercial FruA, produced by Aspergillus niger, was as effective as S. salivarius FruA at inhibiting S. mutans biofilm formation, despite the fact that its amino acid composition is somewhat different from that of S. salivarius.

FruA is produced not only by S. salivarius, but by other oral streptococci. Much of the oral microbial flora consists of many beneficial species of bacteria that help maintain oral health and control the progression of oral disease.

Explore further: How do our muscles work? Scientists reveal important new insights into muscle protein

More information: A. Ogawa, S. Furukawa, S. Fujita, J. Mitobe, T. Kawarai, N. Narisawa, T. Sekizuka, M. Kuroda, K. Ochiai, H. Ogihara, S. Kosono, S. Yoneda, H. Watanabe, Y. Morinaga, H. Uematsu, and H. Senpuku, 2011. Inhibition of Streptococcus mutans biofilm formation by Streptococcus salivarius FruA. Appl. Environ. Microbiol. 77:1572-1580. www.asm.org/images/Communicati… 11/0311%20dental.pdf

Provided by American Society For Microbiology

5 /5 (6 votes)

Related Stories

Taking a closer look at plaque

Oct 26, 2010

A team of University of Rochester scientists is using the technique of Raman spectroscopy to study two common dental plaque bacteria, Streptococcus sanguis and mutans. The relative balance of the two may be an indicator of ...

Scientists turn the tables on infectious bacteria

Dec 14, 2010

A Newcastle University research team has made a significant advance in the ongoing fight against bacterial infections - by turning the infectious microbe's own weapon against itself.

Recommended for you

Genomes of malaria-carrying mosquitoes sequenced

3 hours ago

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

How calcium regulates mitochondrial carrier proteins

Nov 26, 2014

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

Nov 26, 2014

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.