Solutions for 'culture crashes' in algal production sought

April 20, 2011
Solutions for 'culture crashes' in algal production sought
ASU scientist Qiang Hu and his team are studying the factors involved with algal crop failure. Credit: Arizona Board of Regents

(PhysOrg.com) -- Algae can seem quite stubborn and hardy when trying to rid them from your pool, but when it comes to mass producing algal feedstock to be used in the conversion to biofuel, more things can happen to destroy this type of crop than most realize.

Of many culprit organisms that may result in the deterioration of algal culture performance and biomass yield, grazing zooplankton, or so called predators, often are responsible for frequent culture ‘crashes’ and loss of productivity altogether. Except for a few algal strains that can tolerate extreme growing environments that are deterrents to many contaminants, the hazard of predator contamination is so great that sustainable cultivation of many algal crops of economic interest – in particular, oil-producing algal strains on a large scale – has not been possible.

However, with a recent five-year $1 million grant from the U.S. Department of Agriculture (USDA), Arizona State University scientist Qiang Hu and his research team are studying the factors involved with algal crop failure.

Hu, a professor in the College of Technology and Innovation and co-director of the Arizona Center for Algal Technology and Innovation (AzCATI)/Laboratory for Research and Biotechnology (LARB), explains that the cost of crop failures could be in the multimillions of dollars to this emerging green industry if devastating grazing zooplankton have their way.

Zooplankton are microscopic animals that often are identified as amoebas, protozoans, ciliates and rotifers. All are predators on microscopic algae, which represent the base of the aquatic food chain.

“Without a detailed understanding of the factors influencing the occurrence, population dynamics, impact and control of zooplankton, it could potentially prevent algae from being a practical source of oil crops for production of bioenergy and bioproducts,” Hu said.  

To study the zooplankton, Hu and his team will survey zooplankton contamination in commercial algal production systems, as well as in their own algae testbed facilities at ASU Polytechnic campus, where a number of production strains are cultivated in various types of culture systems all year round. Simultaneously, they will determine living and non-living influencers on zooplankton, aiming at developing an empirical model for assessment and prediction of potential impact of zooplankton contamination on overall algal culture stability and biomass production potential.

By introducing state-of-the-art bio-imaging and DNA fingerprinting techniques, they will develop a rapid, sensitive monitoring and an early warning system. In parallel, they will evaluate several innovative control measures, and ultimately develop a Best Management Practices Plan (BMPP) for prevention and treatment.  

“The comprehensive BMPP will be the key to achieve sustainable production of algal , and thus enable successful commercialization of algae-based biofuels and bioproducts,” Hu said.

“Results from the research plan to be shared widely with the biotechnology community and benefit the algal biofuels industry, through publications and conference presentations, as well as workshops and training courses provided by LARB and AzCATI,” said Milton Sommerfeld, professor and co-director of LARB and AzCATI.

Explore further: DNA tests could help predict, prevent harmful algal blooms

Related Stories

DNA tests could help predict, prevent harmful algal blooms

September 30, 2008

A paper published in the current issue of the International Journal of Environment and Pollution, explains how a DNA test can be used to detect harmful algal blooms across the globe. The approach outlined could help reduce ...

New sources of biofuel to take pressure off traditional crops

September 10, 2009

"Salt-loving algae could be the key to the successful development of biofuels as well as being an efficient means of recycling atmospheric carbon dioxide", Professor John Cushman of the University of Nevada told the Society ...

Industrial production of biodiesel feasible within 15 years

August 13, 2010

Within 10 to 15 years, it will be technically possible to produce sustainable and economically viable biodiesel from micro-algae on a large scale. Technological innovations during this period should extend the scale of production ...

Research uncovers new threat from harmful algae

March 3, 2011

Harmful algae could be producing substances which affect reproduction in organisms with similar genetic characteristics as humans according to groundbreaking new research.

Recommended for you

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

Studies reveal details of error correction in cell division

July 29, 2015

Cell biologists led by Thomas Maresca at the University of Massachusetts Amherst, with collaborators elsewhere, report an advance in understanding the workings of an error correction mechanism that helps cells detect and ...

Researchers discover new type of mycovirus

July 29, 2015

Researchers, led by Dr Robert Coutts, Leverhulme Research Fellow from the School of Life and Medical Sciences at the University of Hertfordshire, and Dr Ioly Kotta-Loizou, Research Associate at Imperial College, have discovered ...

Stressed out plants send animal-like signals

July 29, 2015

University of Adelaide research has shown for the first time that, despite not having a nervous system, plants use signals normally associated with animals when they encounter stress.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.