Simple chemical cocktail shows first promise for limb re-growth in mammals

Apr 06, 2011
Simple chemical cocktail shows first promise for limb re-growth in mammals
Just as injured newts can sprout new limbs, a simple chemical cocktail shows promise for limb re-growth in mammals. It nudges mouse cells on a path toward regeneration. Credit: iStock

Move over, newts and salamanders. The mouse may join you as the only animal that can re-grow their own severed limbs. Researchers are reporting that a simple chemical cocktail can coax mouse muscle fibers to become the kinds of cells found in the first stages of a regenerating limb. Their study, the first demonstration that mammal muscle can be turned into the biological raw material for a new limb, appears in the journal ACS Chemical Biology.

Darren R. Williams and Da-Woon Jung say their "relatively simple, gentle, and reversible" methods for creating the early stages of limb regeneration in mouse cells "have implications for both and stem cell biology." In the future, they suggest, the chemicals they use could speed wound healing by providing new cells at the injured site before the wound closes or becomes infected. Their methods might also shed light on new ways to switch adult cells into the all-purpose, so-called "pluripotent," stem cells with the potential for growing into any type of tissue in the body.

The scientists describe the chemical cocktail that they developed and used to turn mouse into muscle cells. Williams and Jung then converted the turned into fat and bone cells. Those transformations were remarkably similar to the initial processes that occur in the tissue of newts and that is starting to regrow severed limbs.

Explore further: Team discovers evolutionary mechanism that allows bacteria to resist antibiotics

More information: “Novel Chemically Defined Approach To Produce Multipotent Cells from Terminally Differentiated Tissue Syncytia” ACS Chemical Biology.

Related Stories

Team identifies stem cells that repair injured muscles

Mar 05, 2009

A University of Colorado at Boulder research team has identified a type of skeletal muscle stem cell that contributes to the repair of damaged muscles in mice, which could have important implications in the treatment of injured, ...

Regrowing lost limbs

Aug 04, 2010

Another option may be on the horizon for patients who lose limbs due to war, accident, or disease. Instead of using artificial legs or arms, patients actually may regrow their own missing limbs. An article in the current ...

Stem cell surprise for tissue regeneration (w/ Podcast)

Jun 25, 2009

Scientists working at the Carnegie Institution's Department of Embryology, with colleagues, have overturned previous research that identified critical genes for making muscle stem cells. It turns out that ...

Newts which Regrow their Hearts

Dec 05, 2006

When a newt loses a limb, the limb regrows. What is more, a newt can also completely repair damage to its heart. Scientists at the Max Planck Institute for Heart and Lung Research in Bad Nauheim have now started ...

Recommended for you

Cell imaging gets colorful

3 hours ago

The detection and imaging of protein-protein interactions in live cells just got a lot more colourful, thanks to a new technology developed by University of Alberta chemist Dr. Robert E. Campbell and his ...

New strategy to combat 'undruggable' cancer molecule

3 hours ago

Three of the four most fatal cancers are caused by a protein known as Ras; either because it mutates or simply because it ends up in the wrong place at the wrong time. Ras has proven an elusive target for ...

Chemists find a way to unboil eggs

4 hours ago

UC Irvine and Australian chemists have figured out how to unboil egg whites – an innovation that could dramatically reduce costs for cancer treatments, food production and other segments of the $160 billion ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.