Simple chemical cocktail shows first promise for limb re-growth in mammals

Apr 06, 2011
Simple chemical cocktail shows first promise for limb re-growth in mammals
Just as injured newts can sprout new limbs, a simple chemical cocktail shows promise for limb re-growth in mammals. It nudges mouse cells on a path toward regeneration. Credit: iStock

Move over, newts and salamanders. The mouse may join you as the only animal that can re-grow their own severed limbs. Researchers are reporting that a simple chemical cocktail can coax mouse muscle fibers to become the kinds of cells found in the first stages of a regenerating limb. Their study, the first demonstration that mammal muscle can be turned into the biological raw material for a new limb, appears in the journal ACS Chemical Biology.

Darren R. Williams and Da-Woon Jung say their "relatively simple, gentle, and reversible" methods for creating the early stages of limb regeneration in mouse cells "have implications for both and stem cell biology." In the future, they suggest, the chemicals they use could speed wound healing by providing new cells at the injured site before the wound closes or becomes infected. Their methods might also shed light on new ways to switch adult cells into the all-purpose, so-called "pluripotent," stem cells with the potential for growing into any type of tissue in the body.

The scientists describe the chemical cocktail that they developed and used to turn mouse into muscle cells. Williams and Jung then converted the turned into fat and bone cells. Those transformations were remarkably similar to the initial processes that occur in the tissue of newts and that is starting to regrow severed limbs.

Explore further: Pterostilbene, a molecule similar to resveratrol, as a potential treatment for obesity

More information: “Novel Chemically Defined Approach To Produce Multipotent Cells from Terminally Differentiated Tissue Syncytia” ACS Chemical Biology.

Related Stories

Team identifies stem cells that repair injured muscles

Mar 05, 2009

A University of Colorado at Boulder research team has identified a type of skeletal muscle stem cell that contributes to the repair of damaged muscles in mice, which could have important implications in the treatment of injured, ...

Regrowing lost limbs

Aug 04, 2010

Another option may be on the horizon for patients who lose limbs due to war, accident, or disease. Instead of using artificial legs or arms, patients actually may regrow their own missing limbs. An article in the current ...

Stem cell surprise for tissue regeneration (w/ Podcast)

Jun 25, 2009

Scientists working at the Carnegie Institution's Department of Embryology, with colleagues, have overturned previous research that identified critical genes for making muscle stem cells. It turns out that ...

Newts which Regrow their Hearts

Dec 05, 2006

When a newt loses a limb, the limb regrows. What is more, a newt can also completely repair damage to its heart. Scientists at the Max Planck Institute for Heart and Lung Research in Bad Nauheim have now started ...

Recommended for you

Why plants don't get sunburn

Oct 29, 2014

Plants rely on sunlight to make their food, but they also need protection from its harmful rays, just like humans do. Recently, scientists discovered a group of molecules in plants that shields them from ...

Viral switches share a shape

Oct 27, 2014

A hinge in the RNA genome of the virus that causes hepatitis C works like a switch that can be flipped to prevent it from replicating in infected cells. Scientists have discovered that this shape is shared by several other ...

'Sticky' ends start synthetic collagen growth

Oct 27, 2014

Rice University researchers have delivered a scientific one-two punch with a pair of papers that detail how synthetic collagen fibers self-assemble via their sticky ends.

Cell membranes self-assemble

Oct 27, 2014

A self-driven reaction can assemble phospholipid membranes like those that enclose cells, a team of chemists at the University of California, San Diego, reports in Angewandte Chemie.

Emergent behavior lets bubbles 'sense' environment

Oct 27, 2014

Tiny, soapy bubbles can reorganize their membranes to let material flow in and out in response to the surrounding environment, according to new work carried out in an international collaboration by biomedical ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.