Scientists report interplay between cancer and aging in mice

Apr 05, 2011

Cancer risk increases with age, and scientists have long perceived a possible evolutionary tradeoff between longer lifespan and greater risk of cancer. Now, researchers at Fox Chase Cancer Center find direct evidence for that tradeoff in new data showing that expression of a key tumor suppressor protein induces premature aging in mice.

Greg H. Enders, MD, PhD, associate professor in the and Progenitor Cell Program at Fox Chase, will present the results at the AACR 102nd Annual Meeting 2011 on Tuesday, April 5.

"I didn't anticipate that increased production of the p16 would so readily promote aging," says Enders, who led the study. "The p16 protein has been previously associated with aging, and we know its expression increases during late stages of aging. But the idea that its expression would be sufficient to generate features of aging was surprising."

Although scientists know that loss of p16 is associated with numerous human tumors, they know much less about the function of p16 in normal cells and tissues. To explore this, Enders' team engineered a strain of that enables them to control p16 expression in various tissues and at various times in an animal's lifespan. They quickly found that turning on p16 blocked in normal tissues.

The implications of blocked cell proliferation emerged when they expressed p16 in animals that were not yet fully mature. "They developed features of ," Enders says. "To my knowledge, this is the first model that induces striking characteristics of premature aging where there is no macromolecular damage. The premature aging appears to be the result of blocking cell proliferation."

Previous work showed that p16 accumulates in tissues as they , but these new data suggest that p16 is not just associated with aging. Instead, the protein may be playing a more causal role. "What this suggests to us is that p16 may be an effector of aging — not just a marker of aging tissues."

Remarkably, the team also has preliminary evidence that they may be able to reverse the features of early aging in the immature mice by turning off p16.

The experiments also provide insight into how p16 suppresses tumor formation. Looking closely at the intestines of wild-type and engineered mice, the researchers saw that the p16 protein accumulates in the stem cells of the tissue and prevents them from dividing. Additionally, p16 expression reduced tumor formation in a mouse model of intestinal cancer. Putting those two observations together, Enders and colleagues think that p16 suppresses by restraining proliferation of pre-cancerous stem cells, as well as tumor cells. They are currently testing that hypothesis.

Explore further: Six percent of colorectal cancer found to be interval tumors

add to favorites email to friend print save as pdf

Related Stories

Genetics of aging and cancer resistance

Nov 15, 2008

In the November 15th issue of G&D, Dr. Kenneth Dorshkind and colleagues at the David Geffen School of Medicine (UCLA) have identified two genes – p16(Ink4a) and Arf – that sensitize lymphoid progenitor cells to the ef ...

Recommended for you

Physicians target the genes of lung, colon cancers

9 hours ago

(Medical Xpress)—University of Florida physicians and researchers are collaborating to map the genes of different types of cancer, and then deliver medication to attack cancer at its source.

User comments : 0

More news stories

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Researchers see hospitalization records as additional tool

Comparing hospitalization records with data reported to local boards of health presents a more accurate way to monitor how well communities track disease outbreaks, according to a paper published April 16 in the journal PLOS ON ...

Ebola virus in Africa outbreak is a new strain

The Ebola virus that has killed scores of people in Guinea this year is a new strain—evidence that the disease did not spread there from outbreaks in some other African nations, scientists report.