A safer treatment could be realized for millions suffering from parasite infection

April 15, 2011

A safer and more effective treatment for 10 million people in developing countries who suffer from infections caused by trypanosome parasites could become a reality thanks to new research from Queen Mary, University of London published today (15 April).

Scientists have uncovered the mechanisms behind a drug used to treat and , infections caused by trypanosome parasites which result in 60,000 deaths each year.

The study, appearing in the , investigated how the drug nifurtimox works to kill off the trypanosome.

Co-author of the study, Dr Shane Wilkinson from Queen Mary's School of Biological and Chemical Sciences, said: "Hopefully our research will lead to the development of anti-parasitic medicines which have fewer side effects than nifurtimox and are more effective.

"What we've found is that an enzyme within the parasites carries out the process nifurtimox needs to be converted to a toxic form. This produces a breakdown product which kills the parasite.

"This mechanism overturns the long-held belief that nifurtimox worked against the parasites by inducing oxidative stress in cells."

Nifurtimox has been used for more than 40 years to treat Chagas disease (also known as American trypanosomiasis) and has recently been recommended for use as part of a nifurtimox-eflornithine for African sleeping sickness (also called human African trypanosomiasis).

Dr Wilkinson and his colleagues Dr Belinda Hall and Mr Christopher Bot from Queen Mary's School of Biological and Chemical Sciences focused their research on the characterisation of the breakdown product from nifurtimox.

"The backbone of nifurtimox contains a chemical group called a nitro linked to a ring structure called a furan," Dr Wilkinson explained.

"When the parasite enzyme discussed in the paper reacts with nifurtimox, it converts the nitro group to a derivative called hydroxylamine. The change effectively acts as a switch causing a redistribution of electrons within the compounds chemical backbone."

"The upshot of this redistribution of electrons causes a specific chemical bond in furan ring to break resulting in formation of a toxic product (called an unsaturated open chain nitrile).

"Understanding how nifurtimox kills trypanosomes may generate new and safer compounds which utilise the bioreductive activity of this parasitic enzyme."

Explore further: Put sleeping sickness bug to sleep

Related Stories

Breakthrough in treatment of sleeping sickness

April 3, 2009

(PhysOrg.com) -- Scientists at the University of Glasgow have made a significant breakthrough in the treatment of Sleeping Sickness, otherwise known as Human African Trypanosomasis.

Fly gut bacteria could control sleeping sickness

May 11, 2010

A new bacterial species, found in the gut of the fly that transmits African sleeping sickness, could be engineered to kill the parasite that causes the disease. The study, published in the International Journal of Systematic ...

Drug resistance danger for sleeping sickness treatments

July 5, 2010

(PhysOrg.com) -- Drugs used to treat the epidemic disease African sleeping sickness must be used prudently to prevent the parasite acquiring resistance to current medicines, a new study at the University of Dundee has shown.

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.