Researchers identify new role for cilia protein in mitosis

Apr 04, 2011

Researchers at the University of Massachusetts Medical School have described a previously unknown role for the cilia protein IFT88 in mitosis, the process by which a dividing cell separates its chromosomes containing the cell's DNA into two identical sets of new daughter cells. Published in advance online by Nature Cell Biology, this newly discovered function for IFT88 suggests a possible alternative or contributory cause for cilia-related diseases such as primary ciliary dyskinesia, and polycystic kidney disease.

Famous for its ability to build cilia, a slender protrusion responsible for motility and sensory input, IFT88 is part of a family of transport proteins and that is responsible for moving materials from the cell body to the cilia. These cellular materials are necessary for the proper formation and maintenance of cilia and in the absence of IFT88 cilia are either unable to form or are defective. Over the last several years, scientists have linked cilia dysfunction to a number of diseases now known as ciliopathies. In particular, the loss of IFT88, one of the best-studied cilia proteins, has been associated with polycystic (PKD). PKD is characterized by the presence of multiple cysts in the kidneys and is believed to be caused by cilia dysfunction in kidney cells.

Stephen J. Doxsey, PhD, professor of molecular medicine and biochemistry & molecular pharmacology and cell biology and lead author of the study, shows that IFT88 also plays an important role in . Doxsey and colleagues at UMass Medical School observed that the IFT88 protein is present at the poles of the mitotic spindle, structures which form during mitosis and are required to guide chromosome sets as the cell divides in two and to orient the plane of cell division. He hypothesized that the cilia protein played a transport function during mitosis that was similar to that in cilia.

"We knew that IFT88 and several other proteins in this family were present at spindle poles during mitosis but we didn't know what function, if any, they served," said Doxsey."

Benedicte Delaval, PhD, a postdoctoral fellow in Doxsey's lab and first author of the Nature Cell Biology paper added, "What we found is that IFT88 plays a part in the transport of materials required for building the spindle poles during cell division. The loss of IFT88 protein during mitosis caused a delay in mitotic division and misalignment of the direction and plane of cell division.

This finding raises the possibility that mitotic dysfunction may play a role in previously described cilia-related disorders caused by the same family of IFT proteins. "It appears that the cellular machinery used in cilia formation is very similar to the machinery used in mitosis," said Doxsey. "This new and distinct function for IFT88 suggests that disruption of both cilia and mitosis could co-contribute to ciliopathies."

Since both cilia and spindles arise from a structure in the cell called the centrosome, Doxsey hypothesizes that there may be some underlying defect to the centrosome responsible for both processes going awry. "It's possible that cilia defects alone might actually explain only part of the disease – especially in the kidney," said Doxsey. "At this point, we don't know. What we do know is that IFT88's role in mitosis has yet to be fully explored. It appears, though, to play a similar role in two different functions. We need to take a more global look at the cell to determine what precisely is going on in this family of disorders."

Explore further: Cell division speed influences gene architecture

Related Stories

Scientists study cilia -- microscopic hair

May 05, 2006

Texas scientists studying microscopic hairs called cilia say they found an internal structure that's responsible for a cell's response to external signals.

Loss of cell's 'antenna' linked to cancer's development

Jun 28, 2007

Submarines have periscopes. Insects have antennae. And increasingly, biologists are finding that most normal vertebrate cells have cilia, small hair-like structures that protrude like antennae into the surrounding ...

Recommended for you

Cell division speed influences gene architecture

21 hours ago

Speed-reading is a technique used to read quickly. It involves visual searching for clues to meaning and skipping non-essential words and/ or sentences. Similarly to humans, biological systems are sometimes ...

Secret life of cells revealed with new technique

23 hours ago

(Phys.org) —A new technique that allows researchers to conduct experiments more rapidly and accurately is giving insights into the workings of proteins important in heart and muscle diseases.

In the 'slime jungle' height matters

Apr 23, 2014

(Phys.org) —In communities of microbes, akin to 'slime jungles', cells evolve not just to grow faster than their rivals but also to push themselves to the surface of colonies where they gain the best access ...

Queuing theory helps physicist understand protein recycling

Apr 22, 2014

We've all waited in line and most of us have gotten stuck in a check-out line longer than we would like. For Will Mather, assistant professor of physics and an instructor with the College of Science's Integrated Science Curriculum, ...

User comments : 0

More news stories

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

Imaging turns a corner

(Phys.org) —Scientists have developed a new microscope which enables a dramatically improved view of biological cells.

Sensors may keep hospitalized patients from falling

(Medical Xpress)—To keep hospitalized patients safer, University of Arizona researchers are working on new technology that involves a small, wearable sensor that measures a patient's activity, heart rate, ...