Rethinking reprogramming: A new way to make stem cells

Apr 07, 2011

A paper published by Cell Press in the April 8th issue of the journal Cell Stem Cell reveals a new and more efficient method for reprogramming adult mouse and human cells into an embryonic stem cell-like state and could lead to better strategies for developing stem cells for therapeutic use.

The ability to reprogram adult into cells that resemble has tremendous potential for both stem cell research and regenerative medicine. "Previous studies have demonstrated the usefulness of iPSCs not only in the study of basic stem biology, but also in the ability to generate patient-specific iPSC clones, which can then be further differentiated into the cell type of choice, such as blood, heart or liver cells," explains senior study author, Dr. Edward E. Morrisey, from the University of Pennsylvania. "However, at this point the low efficiency of iPSC reprogramming is a major impediment to adapting the process to large scale studies."

This video is not supported by your browser at this time.

Scientists already knew that microRNAs (miRNAs), small non-coding pieces of that regulate , can enhance traditional cellular reprogramming methods. Dr. Morrisey and colleagues decided to look at whether miRNAs could directly reprogram mature mouse and human cells to a pluripotent stem cell state on their own, without adding any of the other reprogramming factors that are usually used to make iPSCs. Surprisingly, they found that a specific group of miRNAs can indeed reprogram mouse and human adult cells into an iPSC state by themselves, and can do so very rapidly and efficiently. The researchers went on to show that suppression of a chromatin remodeling enzyme called Hdac2 is a necessary part of this miRNA-mediated reprogramming process.

The findings suggest that it may be possible to produce iPSCs without forcing the expression of multiple stem cell-associated . "Taken together, our results show that miRNA and Hdac-mediated pathways can cooperate in a powerful way to reprogram somatic cells to pluripotency, without the need for pluripotent factors," concludes Dr Morrisey. "The current focus on developing miRNAs for therapeutic use could lead to a rapid miRNA/small molecule approach for iPSC reprogramming."

Explore further: Researchers discover new mechanism of DNA repair

Related Stories

A new way to make reprogrammed stem cells

Apr 07, 2011

Researchers at the University of Pennsylvania School of Medicine have devised a totally new and far more efficient way of generating induced pluripotent stem cells (iPSCs), immature cells that are able to ...

Reprogrammed mouse fibroblasts can make a whole mouse

Jul 23, 2009

In a paper publishing online July 23 in Cell Stem Cell, a Cell Press journal, Dr. Shaorong Gao and colleagues from the National Institute of Biological Sciences in Beijing, China, report an important advance in the charac ...

Recommended for you

Researchers discover new mechanism of DNA repair

Jul 03, 2015

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

Stopping Candida in its tracks

Jul 03, 2015

Scientists are one step closer to understanding how a normally harmless fungus changes to become a deadly infectious agent.

New technique maps elusive chemical markers on proteins

Jul 02, 2015

Unveiling how the 20,000 or so proteins in the human body work—and malfunction—is the key to understanding much of health and disease. Now, Salk researchers developed a new technique that allows scientists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.