Researchers discover general recipe for making antimicrobial agents that kill bacteria

Apr 18, 2011 By Wileen Wong Kromhout

Many antimicrobial peptides in our immune system kill bacteria by punching holes in their membranes. Scientists have been researching antimicrobial peptides for more than 30 years, and there is currently a large effort to mimic their antimicrobial action in order to fight antibiotic-resistant bacteria and emerging pathogens.

Now, a research team led by Gerard Wong, a professor of at the UCLA Henry Samueli School of Engineering and Applied Science, has discovered an important pattern in the amino acid content of and has shown that it is consistent with all 1,080 known peptides in the antimicrobial database.

The discovery of this pattern allows for the formulation of a general recipe for making antimicrobial peptides. The recipe is based on physical principles behind the generation of membrane curvature, specifically the type of curvature that facilitates membrane pore formation in bacterial membranes. Knowing this rule will greatly facilitate engineering efforts aimed at making new antibiotics.

The discovery and development of new antibacterials is costly and time consuming. Moreover, it is well known that also evolve immunity to new drugs quickly. This discovery allows for the creation new antibacterial drugs without starting from scratch: A general recipe can be followed, rather than using simple trial and error. Consequently, this will greatly accelerate drug discovery.

Explore further: Killer sea snail a target for new drugs

More information: The research was recently published in the peer-reviewed Journal of the American Chemical Society and is available online at pubs.acs.org/doi/full/10.1021/ja200079a

Related Stories

Two-phase microbial resistance: the example of insects

Nov 26, 2008

(PhysOrg.com) -- In less than an hour, the immune system of the beetle Tenebrio molitor neutralizes most of the bacteria infecting its hemolymph (the equivalent to blood in vertebrates); this is rendered possible ...

Recommended for you

Killer sea snail a target for new drugs

23 hours ago

University of Queensland pain treatment researchers have discovered thousands of new peptide toxins hidden deep within the venom of just one type of Queensland cone snail.

How cancer cells avoid shutdown

Jul 06, 2015

A mechanism beyond the level of gene regulation, which is often the underlying reason for changes in protein levels, does enable the strong accumulation of a tumour promoting protease in stressed cancer cells. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.