Researchers discover general recipe for making antimicrobial agents that kill bacteria

April 18, 2011 By Wileen Wong Kromhout

Many antimicrobial peptides in our immune system kill bacteria by punching holes in their membranes. Scientists have been researching antimicrobial peptides for more than 30 years, and there is currently a large effort to mimic their antimicrobial action in order to fight antibiotic-resistant bacteria and emerging pathogens.

Now, a research team led by Gerard Wong, a professor of at the UCLA Henry Samueli School of Engineering and Applied Science, has discovered an important pattern in the amino acid content of and has shown that it is consistent with all 1,080 known peptides in the antimicrobial database.

The discovery of this pattern allows for the formulation of a general recipe for making antimicrobial peptides. The recipe is based on physical principles behind the generation of membrane curvature, specifically the type of curvature that facilitates membrane pore formation in bacterial membranes. Knowing this rule will greatly facilitate engineering efforts aimed at making new antibiotics.

The discovery and development of new antibacterials is costly and time consuming. Moreover, it is well known that also evolve immunity to new drugs quickly. This discovery allows for the creation new antibacterial drugs without starting from scratch: A general recipe can be followed, rather than using simple trial and error. Consequently, this will greatly accelerate drug discovery.

Explore further: Scientists decipher mechanism behind antimicrobial 'hole punchers'

More information: The research was recently published in the peer-reviewed Journal of the American Chemical Society and is available online at

Related Stories

Two-phase microbial resistance: the example of insects

November 26, 2008

( -- In less than an hour, the immune system of the beetle Tenebrio molitor neutralizes most of the bacteria infecting its hemolymph (the equivalent to blood in vertebrates); this is rendered possible by a cascade ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.