Computer modeling used to study protein involved with cancer, aging and chronic disease

Apr 13, 2011 By Jianhan Chen and Greg Tammen

(PhysOrg.com) -- A new biophysical and biochemical study may lead to better understanding of how structural flexibility controls the interaction of a protein that is closely involved with cancer, aging and other chronic diseases -- thereby facilitating future development of better therapeutic strategies, according to a Kansas State University biochemist.

Jianhan Chen, an assistant professor of biochemistry, was one of the researchers on a collaborative project that took a combined computational and experimental approach to understand how protein p21 functions as a versatile regulator of cell division. Their latest findings, "Intrinsic disorder mediates the diverse regulatory functions of the Cdk inhibitor p21," were published in a recent edition of .

The study used computer simulation to rationalize results from biochemical and biophysical experiments, and provided further insights that would guide future investigations, Chen said. In this case, the focus is human protein p21 and its ability to function as an inhibitor of normal cell growth.

The protein has been shown to be an intrinsically disordered protein. This means it lacks a well-defined three-dimensional structure, characteristics that, until roughly a decade ago, were thought to be necessary for the protein to function.

"For a long time it was believed that proteins must fold to function and it was hard to imagine how an unfolded protein could play a role in crucial cellular areas," Chen said. "What researchers before me found was that by lacking a stable structure, this actually turned out to be really, really important to how these proteins function."

Along with being an intrinsically disordered protein, p21 is a versatile cyclin-dependent kinase, or Cdk, inhibitor -- meaning it adapts to and inhibits a range of Cdk-cyclin complexes that regulate eukaryote cell division. It also has been connected to cancer and aging. For example, Chen said p21 is a principal trans-activation target of the protein and contributes to p53-dependent tumor suppression.

"This is extremely challenging to study. It's highly dynamic and it's heterogeneous," Chen said. Because of this, mechanistic studies of intrinsically disordered proteins like p21 have been limited. Experiment alone is not sufficient and computer modeling is necessary to provide important missing details, he said. A tight integration of both could lead to a precise understanding of how structural flexibility influences function of p21 and other intrinsically disordered proteins.

"For me this is one of the most interesting IDPs," Chen said. "I'm a theorist and I want to use this system to understand the principles of how this type of proteins can perform their functions. Even though they are disordered, they are not random; there is no chaos. They still have some type of residual structures and certain features which allow function to be controlled in a precise way, and I want to understand the underlying mechanism of how this occurs."

Chen is continuing work with p21 and other small proteins that regulate cell cycles.

Explore further: Structure of sodium channels different than previously believed

Related Stories

Common 'chaperone' protein found to work in surprising way

Apr 03, 2011

In the constantly morphing field of protein structure, scientists at The Scripps Research Institute offer yet another surprise: a common "chaperone" protein in cells thought to help other proteins fold has been shown instead ...

Potential new therapeutic molecular target to fight cancer

Nov 01, 2007

Researchers at the Virginia Commonwealth University Massey Cancer Center have identified the enzyme sphingosine kinase 2 as a possible new therapeutic target to improve the efficacy of chemotherapy for colon and breast cancer.

'Linc-ing' a noncoding RNA to a central cellular pathway

Jul 29, 2010

The recent discovery of more than a thousand genes known as large intergenic non-coding RNAs (or "lincRNAs") opened up a new approach to understanding the function and organization of the genome. That surprising breakthrough ...

Recommended for you

Breakthrough points to new drugs from nature

Apr 16, 2014

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

World's first successful visualisation of key coenzyme

Apr 16, 2014

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...