Polymer-reinforced aerogel found resilient for space missions

Apr 11, 2011
Polymer-reinforced aerogel found resilient for space missions
The supercritical aerogel dryer was built by UA polymer engineering graduate student Andrew Shinko.

Polymer-reinforced aerogels could soon go on a space mission. Modifying the mechanical properties of aerogels with a polymer reinforcement creates a durable thermal insulator primed for aerospace, according to recently published research by Dr. Sadhan C. Jana, University of Akron Department of Polymer Engineering chair and professor, UA Ph.D. graduate Jason Randall and NASA Glenn Research Center collaborator Dr. Mary Ann Meador.

"Tailoring of Aerogels for Aerospace Application," featured as a spotlight article in the March 23, 2011, edition of the American Chemical Society's Applied Material & Interfaces describes how polymer-strengthened silica aerogels maintain their effectiveness as thermal insulators under supercritical conditions of outer space, including temperature and pressure extremes.

Polymer improves strength and flexibility

Low thermal conductivity and low density make silica aerogels ideal insulators, according to Jana, yet their fragility often counters their prospective effectiveness, particularly in aerospace applications. Comprised of approximately 95 percent air and 5 percent silica, the delicate aerogels typically break down under relatively low stresses. However, a polymer conformal coating on the nanoskeleton not only improves the strength of aerogels, but their elasticity and flexibility as well.

"Consequently, you now have a material capable of withstanding compression and bending stresses as well as temperature extremes, making it a candidate for use on space rovers, inflatable decelerators and EVA suits," says Jana, whose team research examined density, pore structure, modulus and elastic recovery of epoxy-reinforced aerogels.

Subsequent research could lead to streamlined methods for applying the polymer reinforcement to aerosol articles and expanding their use and configuration. As flexible thin sheets, for example, aerogel insulation material can be wrapped easily around pipes or tanks, using shape memory properties of the polymer reinforcement, or can be produced in net shapes obviating secondary processing or secondary handling, according to Jana.

Explore further: Researchers discover a way to cause surface coating properties to change in less than a second

Provided by University of Akron

5 /5 (2 votes)
add to favorites email to friend print save as pdf

Related Stories

Recommended for you

The fluorescent fingerprint of plastics

2 hours ago

LMU researchers have developed a new process which will greatly simplify the process of sorting plastics in recycling plants. The method enables automated identification of polymers, facilitating rapid separation ...

Water and sunlight the formula for sustainable fuel

7 hours ago

An Australian National University (ANU) team has successfully replicated one of the crucial steps in photosynthesis, opening the way for biological systems powered by sunlight which could manufacture hydrogen ...

Rice chemist wins 'Nobel Prize of Cyprus'

7 hours ago

Rice University organic chemist K.C. Nicolaou has earned three prestigious international honors, including the Nemitsas Prize, the highest honor a Cypriot scientist can receive and one of the most prestigious ...

Researchers create engineered energy absorbing material

8 hours ago

(Phys.org) —Materials like solid gels and porous foams are used for padding and cushioning, but each has its own advantages and limitations. Gels are effective as padding but are relatively heavy; gel performance ...

Solar fuels as generated by nature

9 hours ago

(Phys.org) —Society's energy supply problems could be solved in the future using a model adopted from nature. During photosynthesis, plants, algae and some species of bacteria produce sugars and other energy-rich ...

User comments : 0