NJIT professor develops biologically-inspired catalysis active, yet inert materials

Apr 19, 2011

NJIT Associate Professor Sergiu M. Gorun is leading a research team to develop biologically-inspired catalysis active, yet inert, materials. The work is based on organic catalytic framework made sturdy by the replacement of carbon-hydrogen bonds with a combination of aromatic and aliphatic carbon-fluorine bonds. Graduate students involved with this research recently received first place recognition at the annual NJIT Dana Knox student research showcase.

The newest focus of Gorun's research has been the cobalt complex as a for which the known degradation pathways appear to have been suppressed. "Broadening the Reactivity Spectrum of a Phthalocyanine Catalyst While Suppressing Its Nucleophilic, Electrophilic and Radical Degradation Pathways" by Gorun and others appeared in the web issue of Dalton Transactions (2011), ASAP Communication. Similar to a previous publication, this recent one addresses an important industrial process, the "sweetening" of by the transformation of smelly and corrosive thiols into disufides. The extreme electronic deficiency of the new catalyst metal center allows it to process molecules that are not reactive in the presence of regular catalysts that perform this chemistry industrially.

Two years ago Gorun and his team reported that the related zinc perfluoroalkylated phthalocyanine, a molecule resembling the porphyrin core of several heme enzymes, exhibit highly-efficient photochemical of an organic substrate. This was of great interest to the fragrance industry ("Rational design of a reactive yet stable organic-based photocatalyst" Dalton Transactions, 2009, 1098).

Concurrently, the unusual properties of Gorun's are explored in parallel in constructing surface coatings, an area in which Gorun was awarded US patent 7,670,684. Several publications describe the properties of the new coatings.

Explore further: New CMI process recycles magnets from factory floor

More information: DOI: 10.1039/C1DT10458F

Related Stories

New Class of Catalyst Sports Shapely Selectivity

Mar 10, 2010

A new class of catalytic material has been studied by scientists at Pacific Northwest National Laboratory. Metal-organic frameworks (MOFs) display a unique three-dimensional structure that is highly selective ...

Coal Liquefaction

Jan 09, 2006

The tightening of worldwide oil reserves is causing the price of oil to escalate — and makes coal, which is much more abundantly available, an interesting starting material for liquid fuels and chemical raw materials. Researchers ...

Recommended for you

New CMI process recycles magnets from factory floor

1 hour ago

A new recycling method developed by scientists at the Critical Materials Institute, a U.S. Department of Energy Innovation Hub led by the Ames Laboratory, recovers valuable rare-earth magnetic material from ...

Chemists characterize 3-D macroporous hydrogels

5 hours ago

Carnegie Mellon University chemists have developed two novel methods to characterize 3-dimensional macroporous hydrogels—materials that hold great promise for developing "smart" responsive materials that ...

Substrates change nanoparticle reactivity

11 hours ago

(Phys.org)—Nanoscale materials tend to behave differently than their bulk counterparts. While there are many theories as to why this happens, technological advances in scanning tunneling microscopy (STM) ...

Reviving cottonseed meals adhesives potential

13 hours ago

Cottonseed meal—the leftovers after lint and oil are extracted from cottonseed—is typically fed to ruminant livestock, such as cows, or used as fertilizer. But Agricultural Research Service scientists ...

New concrete composite can heal itself

13 hours ago

In the human body, small wounds are easily treated by the body itself, requiring no further care. For bigger wounds to be healed, the body may need outside assistance. Concrete is like a living body, in that ...

Actuators that mimic ice plants

14 hours ago

Engineers developing moveable robot components may soon take advantage of a trick plants use. Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam and Harvard University in Cambridge ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.