NJIT professor develops biologically-inspired catalysis active, yet inert materials

April 19, 2011

NJIT Associate Professor Sergiu M. Gorun is leading a research team to develop biologically-inspired catalysis active, yet inert, materials. The work is based on organic catalytic framework made sturdy by the replacement of carbon-hydrogen bonds with a combination of aromatic and aliphatic carbon-fluorine bonds. Graduate students involved with this research recently received first place recognition at the annual NJIT Dana Knox student research showcase.

The newest focus of Gorun's research has been the cobalt complex as a for which the known degradation pathways appear to have been suppressed. "Broadening the Reactivity Spectrum of a Phthalocyanine Catalyst While Suppressing Its Nucleophilic, Electrophilic and Radical Degradation Pathways" by Gorun and others appeared in the web issue of Dalton Transactions (2011), ASAP Communication. Similar to a previous publication, this recent one addresses an important industrial process, the "sweetening" of by the transformation of smelly and corrosive thiols into disufides. The extreme electronic deficiency of the new catalyst metal center allows it to process molecules that are not reactive in the presence of regular catalysts that perform this chemistry industrially.

Two years ago Gorun and his team reported that the related zinc perfluoroalkylated phthalocyanine, a molecule resembling the porphyrin core of several heme enzymes, exhibit highly-efficient photochemical of an organic substrate. This was of great interest to the fragrance industry ("Rational design of a reactive yet stable organic-based photocatalyst" Dalton Transactions, 2009, 1098).

Concurrently, the unusual properties of Gorun's are explored in parallel in constructing surface coatings, an area in which Gorun was awarded US patent 7,670,684. Several publications describe the properties of the new coatings.

Explore further: Coal Liquefaction

More information: DOI: 10.1039/C1DT10458F

Related Stories

Coal Liquefaction

January 9, 2006

The tightening of worldwide oil reserves is causing the price of oil to escalate — and makes coal, which is much more abundantly available, an interesting starting material for liquid fuels and chemical raw materials. Researchers ...

New Class of Catalyst Sports Shapely Selectivity

March 10, 2010

A new class of catalytic material has been studied by scientists at Pacific Northwest National Laboratory. Metal-organic frameworks (MOFs) display a unique three-dimensional structure that is highly selective and reactive, ...

Recommended for you

A marine creature's magic trick explained

September 2, 2015

Tiny ocean creatures known as sea sapphires perform a sort of magic trick as they swim: One second they appear in splendid iridescent shades of blue, purple or green, and the next they may turn invisible (at least the blue ...

New method opens pathway to new drugs and dyes

September 2, 2015

Rice University scientists have developed a practical method to synthesize chemical building blocks widely used in drug discovery research and in the manufacture drugs and dyes.

Brazilian wasp venom kills cancer cells by opening them up

September 1, 2015

The social wasp Polybia paulista protects itself against predators by producing venom known to contain a powerful cancer-fighting ingredient. A Biophysical Journal study published September 1 reveals exactly how the venom's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.