Nanomagnets offer food for thought about computer memories

Apr 27, 2011 By Laura Ost
Collage of NIST "nano-eggs" — simulated magnetic patterns in NIST’s egg-shaped nanoscale magnets.Credit: Talbott/NIST

(PhysOrg.com) -- Magnetics researchers at the National Institute of Standards and Technology (NIST) colored lots of eggs recently. Bunnies and children might find the eggs a bit small—in fact, too small to see without a microscope. But these "eggcentric" nanomagnets have another practical use, suggesting strategies for making future low-power computer memories.

For a study described in a new paper, NIST researchers used electron-beam lithography to make thousands of nickel-iron magnets, each about 200 nanometers (billionths of a meter) in diameter. Each magnet is ordinarily shaped like an ellipse, a slightly flattened circle. Researchers also made some magnets in three different egglike shapes with an increasingly pointy end. It's all part of NIST research on nanoscale magnetic materials, devices and measurement methods to support development of future magnetic data storage systems.

It turns out that even small distortions in magnet shape can lead to significant changes in magnetic properties. Researchers discovered this by probing the magnets with a laser and analyzing what happens to the "spins" of the electrons, a quantum property that's responsible for magnetic orientation. Changes in the spin orientation can propagate through the magnet like waves at different frequencies. The more egg-like the magnet, the more complex the wave patterns and their related frequencies. (Something similar happens when you toss a pebble in an asymmetrically shaped pond.) The shifts are most pronounced at the ends of the magnets.

To confirm localized magnetic effects and "color" the eggs, scientists made simulations of various magnets using NIST's object-oriented micromagnetic framework (OOMMF). (See graphic.) Lighter colors indicate stronger frequency signals.

The egg effects explain erratic behavior observed in large arrays of , which may be imperfectly shaped by the lithography process. Such distortions can affect switching in magnetic devices. The egg study results may be useful in developing random-access memories (RAM) based on interactions between electron spins and magnetized surfaces. Spin-RAM is one approach to making future memories that could provide high-speed access to data while reducing processor power needs by storing data permanently in ever-smaller devices. Shaping magnets like eggs breaks up a symmetric frequency pattern found in ellipse structures and thus offers an opportunity to customize and control the switching process.

"For example, intentional patterning of egg-like distortions into spinRAM memory elements may facilitate more reliable switching," says NIST physicist Tom Silva, an author of the new paper.

"Also, this study has provided the Easter Bunny with an entirely new market for product development."

Explore further: Study sheds new light on why batteries go bad

More information: H.T. Nembach, et al. Effects of shape distortions and imperfections on mode frequencies and collective linewidths in nanomagnets. Physical Review B 83, 094427, March 28, 2011.

Related Stories

Scientists study a magnetic makeover

Jan 17, 2007

Researchers at the University of Victoria have discovered new lightweight magnets that could be used in making everything from extra-thin magnetic computer memory to ultra-light spacecraft parts. A paper on the study will ...

Using nano-magnets to enhance medical imaging

Feb 01, 2007

Nanoscale magnets in the form of iron-containing molecules might be used to improve the contrast between healthy and diseased tissue in magnetic resonance imaging (MRI)—as long as the concentration of nanomagnets ...

Scientists achieve highest-resolution MRI of a magnet

Aug 11, 2010

In a development that holds potential for both data storage and biomedical imaging, Ohio State University researchers have used a new technique to obtain the highest-ever resolution MRI scan of the inside ...

Novel Zigzag Shape Gives Sensors Magnetic Appeal

Jan 05, 2005

Scientists at the National Institute of Standards and Technology (NIST) have designed tiny magnetic sensors in a "zigzag" shape that are simpler in design and likely will be cheaper to make than conventional ...

Recommended for you

For electronics beyond silicon, a new contender emerges

8 hours ago

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

10 hours ago

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

11 hours ago

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

Moving silicon atoms in graphene with atomic precision

Sep 12, 2014

Richard Feynman famously posed the question in 1959: is it possible to see and manipulate individual atoms in materials? For a time his vision seemed more science fiction than science, but starting with groundbreaking ...

User comments : 0