Researchers inject nanofiber spheres carrying cells into wounds to grow tissue

April 17, 2011
Credit: Peter Ma

For the first time, scientists have made star-shaped, biodegradable polymers that can self-assemble into hollow, nanofiber spheres, and when the spheres are injected with cells into wounds, these spheres biodegrade, but the cells live on to form new tissue.

Developing this nanofiber sphere as a cell carrier that simulates the natural growing environment of the cell is a very significant advance in tissue repair, says Peter Ma, professor at the University of Michigan School of Dentistry and lead author of a paper about the research scheduled for advanced online publication in . Co-authors are Xiaohua Liu and Xiaobing Jin.

Repairing tissue is very difficult and success is extremely limited by a shortage of , says Ma, who also has an appointment at the U-M College of Engineering. The procedure gives hope to people with certain types of injuries for which there aren't good treatments now. It also provides a better alternative to ACI, which is a clinical method of treating cartilage injuries where the patient's own are directly injected into the patient's body. The quality of the tissue repair by the ACI technique isn't good because the cells are injected loosely and are not supported by a carrier that simulates the natural environment for the cells, Ma says.

To repair complex or oddly shaped tissue defects, an injectable cell carrier is desirable to achieve accurate fit and to minimize surgery, he says. Ma's lab has been working on a biomimetic strategy to design a cell matrix---a system that copies biology and supports the cells as they grow and form tissue---using biodegradable .

Ma says the nanofibrous hollow are highly porous, which allows nutrients to enter easily, and they mimic the functions of cellular matrix in the body. Additionally, the nanofibers in these hollow microspheres do not generate much degradation byproducts that could hurt the cells, he says.

The nanofibrous hollow spheres are combined with cells and then injected into the wound. When the nanofiber spheres, which are slightly bigger than the cells they carry, degrade at the wound site, the cells they are carrying have already gotten a good start growing because the nanofiber spheres provide an environment in which the cells naturally thrive.

This approach has been more successful than the traditional cell matrix currently used in tissue growth, he says. Until now, there has been no way to make such a matrix injectable so it's not been used to deliver cells to complex-shaped wounds.

During testing, the nanofiber repair group grew as much as three to four times more tissue than the control group, Ma says. The next step is to see how the new cell carrier works in larger animals and eventually in people to repair cartilage and other tissue types.

Explore further: Scientists progress in successful tissue engineering

Related Stories

Scientists progress in successful tissue engineering

March 23, 2007

Tissue engineering is a relatively new field of basic and clinical science that is concerned, in part, with creating tissues that can augment or replace injured, defective, or diseased body parts.

Team identifies stem cells that repair injured muscles

March 5, 2009

A University of Colorado at Boulder research team has identified a type of skeletal muscle stem cell that contributes to the repair of damaged muscles in mice, which could have important implications in the treatment of injured, ...

Bone formation from embryonic stem cells

October 22, 2009

Jojanneke Jukes of the University of Twente, The Netherlands, has succeeded in growing bone tissue with the help of embryonic stem cells for the first time.

Growing cartilage -- no easy task

February 1, 2010

Northwestern University researchers are the first to design a bioactive nanomaterial that promotes the growth of new cartilage in vivo and without the use of expensive growth factors. Minimally invasive, the therapy activates ...

Recommended for you

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Apr 17, 2011
Very interesting as always Physorg. Makes me wonder who will be the first commercial provider for this type of advanced care! I guess we'll find out in 10 to 40 years.
not rated yet Apr 17, 2011
hopefully this yields a good way of treating HIV/AIDS patients

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.