Mussel adhesive inspires tough coating for living cells

April 6, 2011

Inspired by Mother Nature, scientists are reporting development of a protective coating with the potential to enable living cells to survive in a dormant condition for long periods despite intense heat, dryness and other hostile conditions. In a report in Journal of the American Chemical Society, they liken the coating to the armor that encloses the spores that protect anthrax and certain other bacterial cells, making those microbes difficult to kill.

Insung S. Choi and colleagues say their simple method for coating the yeast cells could "serve as a new strategy for controlling cell division and protection of artificial spore like structures in a designed way." The technique could be used to encapsulate individual cells for a variety of purposes, including the creation of tiny chemical probes, single-cell chemical factories, and perhaps armor for transplanted cells used in anti-cancer therapies.

The new coating is an called polydopamine, chemically similar to mussel adhesive. In laboratory experiments, the coating slowed down cell division in the yeast, while protecting them from cell-digesting chemicals. "We believe that polydopamine encapsulation would be a good starting point for both fundamental research and applications based on artificial ," Choi and colleagues note in their study, "as it endows living cells with durability against harsh environments, controllability in cell cycles, and reactivity for cell-surface modification."

Explore further: Nanotube Coating Meshes with Living Cells

Related Stories

Nanotube Coating Meshes with Living Cells

August 14, 2006

Using a polymer coating that mimics part of a cell’s outer membrane, a team of investigators at the University of California, Berkeley, have developed a versatile method for targeting carbon nanotubes to specific types ...

Researchers track how spores break out of dormant state

June 4, 2007

Tapping into the unknown world of awakening dormant bacterial spores, researchers have revealed through atomic force microscopy (AFM) the alterations of spore coat and germ cell wall that accompany the transformation from ...

MIT works toward novel therapeutic device

October 22, 2007

MIT and University of Rochester researchers report important advances toward a therapeutic device that has the potential to capture cells as they flow through the blood stream and treat them. Among other applications, such ...

Recommended for you

New polymer creates safer fuels

October 1, 2015

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact. Researchers ...

Researchers print inside gels to create unique shapes

September 30, 2015

(—A team of researchers at the University of Florida has taken the technique of printing objects inside of a gel a step further by using a highly shear-rate sensitive gel. In their paper published in the journal ...

How a molecular motor untangles protein

October 1, 2015

A marvelous molecular motor that untangles protein in bacteria may sound interesting, yet perhaps not so important. Until you consider the hallmarks of several neurodegenerative diseases—Huntington's disease has tangled ...

Anti-aging treatment for smart windows

October 1, 2015

Electrochromic windows, so-called 'smart windows', share a well-known problem with rechargeable batteries – their limited lifespan. Researchers at Uppsala University have now worked out an entirely new way to rejuvenate ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.