MU researcher works with carbon fiber to reinforce buildings; protect from explosion

April 14, 2011

Most buildings are not constructed to withstand an unexpected explosion or impact. Now, a researcher at the University of Missouri is working with the U.S. Army to test a method of retrofitting buildings to protect them in the case of a terrorist attack.

Sarah Orton, assistant professor of civil engineering in the MU College of Engineering, has focused on using reinforced polymer (CFRP), a fabric that can carry 143,000 pounds of force per square inch and has various applications to strengthen reinforced concrete buildings. CFRP has been used previously to strengthen buildings for earthquakes.

"CFRP has been used in places like California since the 1980s to protect buildings from earthquakes, but it has so many applications," Orton said. "Now, we have to worry about damage caused by attacks. This fabric can be a great tool to protect people in threatened buildings."

To protect a building from an extreme event, CFRP can be used to increase the bending capacity of walls or columns. Previously, Orton invented an anchor that can be embedded in the column or joint to make CFRP more effective. In that work, Orton found that the anchors allow the CFRP to reach its full tension strength rather than separating from the concrete at only about half its strength.

This video is not supported by your browser at this time.

CFRP can be used to protect an entire wall from an . To study the effectiveness of different ways of applying CFRP, Orton worked with the U.S. Army Engineer Research and Development Center (ERDC) to detonate explosives near CFRP-reinforced concrete slabs. She found that CFRP, when layered and anchored, provided a significant amount of protection. However, she said that applying additional protection to the front of the concrete slab, such as a steel plate, would enhance the slab's performance.

Orton says the high costs of approximately $30 per square foot have kept CFRP from being widely implemented in non-earthquake prone areas.

"This is a really useful material," Orton said. "I continue to be fascinated by the material's strength and applications. Retrofitting buildings with CFRP will help protect people from attacks and potentially collapse of the ."

Explore further: Advanced Bridge Materials’ Efficacy Tested at NC State University

Related Stories

Earthquake Study Suggests Simple Building Fixes Can Save Lives

October 14, 2005

According to a recent report, a small number of reinforced concrete walls would have been sufficient to keep schools, dormitories and other buildings standing after the 2003 earthquake in Bingöl, Turkey. An American-Turkish ...

New building design withstands earthquake simulation (Video)

February 26, 2009

( -- Researchers at the University of Michigan simulated an off-the-charts earthquake in a laboratory to test their new technique for bracing high-rise concrete buildings. Their technique passed the test, withstanding ...

High tech for bicycles

October 21, 2009

Carbon fiber composite materials (CFRPs) not only make cars and airplanes lightweight but also benefit the light weight constructions for valuable bicycle concepts. At the Composites Europe trade show in Stuttgart, Fraunhofer ...

Recommended for you

Toyota promises better mileage and ride with Prius hybrid

October 13, 2015

Toyota Motor Corp. released details for its fourth-generation Prius on Tuesday, promising that improvements in the battery, engine, wind resistance and weight mean better mileage for the world's top-selling hybrid car.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.