Researchers find missing link in plant defense against fungal disease

Apr 19, 2011

Botrytis bunch rot, a disease caused by the fungal pathogen Botrytis cinerea, can devastate grape vineyards. Yet other plants can repel the invader and protect themselves by mounting a form of chemical warfare against the fungi through the production of antimicrobial substances, called phytoalexins.

Scientists at the University of Missouri report on a discovery in a key component in the signaling pathway that regulates the production of phytoalexins to kill the disease-causing fungus Botrytis cinerea.

"When the mustard detects the fungus Botrytis cinerea, it produces a phytoalexin, called camalexin, in response," said Shuqun Zhang, professor of biochemistry and senior author of the study. "Camalexin acts as sort of an antibiotic against the specific fungus, allowing the plant to successfully defend itself."

In previous work, Zhang and his colleagues showed a , known as MAPK cascade, triggers the transcription activation of genes that make camalexin in Arabidopsis. This study shows that the target of this signaling cascade is the WRKY33 transcription factor.

Arabidopsis lacking the gene are unable to synthesize camalexin and are more susceptible to the Botrytis cinerea fungus.

The finding provides an important missing link in the chain of molecules that tells the plant to mount an appropriate defense against an invading microbe.

"Phytoalexins are one important way plants defend themselves naturally against pathogens. Knowing how plants regulate this defense response may allow us to naturally enhance pathogen tolerance in plants," Zhang said.

Explore further: Science could make canola oil more nutritious, and broccoli more tasty

More information: The study, titled "Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis," is highlighted in the April 15 online early edition publication of The Plant Cell.

Related Stories

Advance in the battle against 'gray mold'

Dec 15, 2008

Scientists are reporting identification of the cluster of genes responsible for the toxins produced by "gray mold," a devastating plant disease that kills almost 200 different food and ornamental plants including ...

Table grapes' new ally: Muscodor albus

Apr 16, 2010

Small but mighty, a beneficial microbe called Muscodor albus may help protect fresh grapes from troublesome gray mold. Experiments conducted over the past several years by Agricultural Research Service (ARS) plant pathol ...

Changing smell of plants announces fungus attack

Oct 20, 2009

(PhysOrg.com) -- Tomato plants under attack from the Botrytis fungus give off an aromatic substance that can be measured in greenhouses. This is the result of research performed by Roel Jansen with which he ...

Recommended for you

Water 'thermostat' could help engineer drought-resistant crops

31 minutes ago

Duke University researchers have identified a gene that could help scientists engineer drought-resistant crops. The gene, called OSCA1, encodes a protein in the cell membrane of plants that senses changes in water availability ...

Biotech firm's GM mosquitoes to fight dengue in Brazil

12 hours ago

It's a dry winter day in southeast Brazil, but a steamy tropical summer reigns inside the labs at Oxitec, where workers are making an unusual product: genetically modified mosquitoes to fight dengue fever.

User comments : 0