Better lasers for optical communications

Apr 12, 2011

A new laser procedure could boost optical fiber communications. This technique could become essential for the future expansion of the Internet. It also opens up new frontiers in basic research.

Long-distance, high speed communications depend on lasers. But when information is transmitted down fiber optic cables, it's critical that the signal be clear enough to be decoded at the other end. Two factors are important in this respect: the color of the light, otherwise known as the wavelength, and the orientation of the light wave, known as polarization. A team from EPFL and the Swiss Federal Laboratories for Materials Science and Technology (EMPA) has developed a technique that improves control over these two parameters.

"All indications are that this technology could be useful at both industrial and scientific levels," explains Eli Kapon, head of EPFL's Laboratory of Physics of Nanostructures. More than fifteen years of research were required to arrive at this result, work that "has caused many headaches and demanded significant investment."

To obtain the right wavelength, the EPFL researchers adapted the lasers' size. In parallel, the EMPA scientists designed a nanometer-scale grating for the emitter in order to control the light's polarization. They were able to achieve this feat by vaporizing long molecules containing with a straw-like tool operating above the lasers. Using an electron microscope, they were able to arrange and attach to the surface of each with extreme precision. Thus deposited, the grating serves as a filter for polarizing the light, much like the lenses of sunglasses are used to polarize sunlight.

Industrial and scientific advantages

This technique, developed in collaboration with EMPA, has many advantages. It allows a high-speed throughput of several gigabits a second with reduced transmission errors. The lasers involved are energy-efficient, consuming up to ten times less than their traditional counterparts, thanks to their small size. The technique is very precise and efficient, due to the use of the .

"This progress is very satisfying," adds Kapon, who also outlines some possible applications. "These kinds of lasers are also useful for studying and detecting gases using spectroscopic methods. We will thus make gains in precision by improving detector sensitivity."

Explore further: Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch

More information: Ivo Utke, Martin G. Jenke, Christian Röling, Peter H. Thiesen, Vladimir Iakovlev, Alexei Sirbu, Alexandru Mereuta, Andrei Caliman and Eli Kapon, Polarisation stabilisation of vertical cavity surface emitting lasers by minimally invasive focused electron beam triggered chemistry, Nanoscale, 2011. pubs.rsc.org/en/content/articl… g/2011/nr/c1nr10047e

Provided by Ecole Polytechnique Federale de Lausanne

not rated yet
add to favorites email to friend print save as pdf

Related Stories

More flexibility for lasers

May 03, 2007

Until now, industrial lasers have been able to perform only one specific task effectively – they are generally good at either hardening, cutting or welding metal. Moreover, they are often bulky and unwieldy. ...

Tiny spectrometer offers precision laser calibration

May 11, 2007

A tiny device for calibrating or stabilizing precision lasers has been designed and demonstrated at the National Institute of Standards and Technology. The prototype device could replace table-top-sized instruments ...

Molecules in the spotlight

Dec 12, 2008

A novel x-ray technique allowing the observation of molecular motion on a time scale never reached before has been developed by a team of researchers from EPFL and the Paul Scherrer Institute (PSI) in Switzerland. Results ...

Recommended for you

For electronics beyond silicon, a new contender emerges

Sep 16, 2014

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

Sep 16, 2014

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

Sep 16, 2014

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

User comments : 0