Large or small, platinum clusters provide new insights

Apr 28, 2011
Large or small, platinum clusters provide new insights
Density functional theory calculated reaction path for formation of the reactive O*-O-C*=O intermediate, the kinetically relevant step for CO oxidation at low temperature.

Using Environmental Molecular Sciences Laboratory's high-performance supercomputing capabilities, scientists helped resolve longstanding controversies about the effect of platinum cluster size on some emissions-reducing reactions in automobile catalysts.

The research team included scientists from the University of California, Nanostellar, Inc., the University of Virginia and Lawrence Berkeley National Laboratory.

Carbon monoxide (CO) removal from exhaust, typically carried out by oxidation on three-way catalysts containing platinum, is critically important for cleaner-burning engines.

The researchers used EMSL’s Chinook supercomputer to carry out detailed ab initio quantum mechanical calculations on very large (201-atom) platinum clusters to model the environment of platinum nanoparticles fully covered with CO.

The team integrated rigorous kinetic, isotopic, and in-situ spectroscopy studies of platinum clusters with theoretical simulations of CO oxidation catalysis at conditions prevalent in many industrial applications to gain a better understanding of catalytic activity on platinum clusters.

When a platinum covered with CO is at low temperatures, the size of the platinum cluster makes little difference in the rate of oxidation.

For other reactions catalyzed by clusters in automobile exhaust, larger clusters will oxidize nitric oxide or dimethyl ether much faster.

CO is also a critical step in the production of pure hydrogen streams for use in fuels cells and in many chemical processes.

Explore further: New, more versatile version of Geckskin: Gecko-like adhesives now useful for real world surfaces

More information: Allian AD, et al. 2011. "Chemisorption of CO and Mechanism of CO Oxidation on Supported Platinum Nanoclusters." J. Am. Chem. Soc., 2011, 133 (12), pp 4498–4517 DOI: 10.1021/ja110073u

Provided by Environmental Molecular Sciences Laboratory

not rated yet
add to favorites email to friend print save as pdf

Related Stories

For platinum catalysts, smaller may be better

Jun 28, 2010

When it comes to metal catalysts, the platinum standard is, well, platinum! However, at about $2,000 an ounce, platinum is more expensive than gold. The high cost of the raw material presents major challenges ...

Platinum nanocatalyst could aid drugmakers

Aug 31, 2009

(PhysOrg.com) -- Nanoparticles combining platinum and gold act as superefficient catalysts, but chemists have struggled to create them in an industrially useful form. Rice University chemists have answered the call this week ...

Recommended for you

A greener source of polyester—cork trees

Apr 16, 2014

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

User comments : 0

More news stories

Treating depression in Parkinson's patients

A group of scientists from the University of Kentucky College of Medicine and the Sanders-Brown Center on Aging has found interesting new information in a study on depression and neuropsychological function in Parkinson's ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...