Researchers develop golden window electrodes for organic solar cells

Apr 06, 2011

Researchers at the University of Warwick have developed a gold plated window as the transparent electrode for organic solar cells. Contrary to what one might expect, these electrodes have the potential to be relatively cheap since the thickness of gold used is only 8 billionths of a metre. This ultra-low thickness means that even at the current high gold price the cost of the gold needed to fabricate one square metre of this electrode is only around £4.5. It can also be readily recouped from the organic solar cell at the end of its life and since gold is already widely used to form reliable interconnects it is no stranger to the electronics industry.

Organic solar cells have long relied on Indium Tin Oxide (ITO) coated glass as the , although this is largely due to the absence of a suitable alternative. ITO is a complex, unstable material with a high surface roughness and tendency to crack upon bending if supported on a plastic substrate. If that wasn’t bad enough one of its key components, indium, is in short supply making it relatively expensive to use.

An ultra-thin film of air-stable metal like gold would offer a viable alternative to ITO, but until now it has not proved possible to deposit a film thin enough to be transparent without being too fragile and electrically resistive to be useful.

Now research led by Dr Ross Hatton and Professor Tim Jones in the University of Warwick ’s department of Chemistry has developed a rapid method for the preparation of robust, ultra-thin gold films on glass. Importantly this method can be scaled up for large area applications like solar cells and the resulting electrodes are chemically very well-defined.

Dr Hatton says “This new method of creating gold based transparent electrodes is potentially widely applicable for a variety of large area applications, particularly where stable, chemically well-defined, ultra-smooth platform are required, such as in organic optoelectronics and the emerging fields of nanoelectronics and nanophotonics”

The full research paper entitled Ultrathin Transparent Au Electrodes for Organic Photovoltaics Fabricated Using a Mixed Mono-Molecular Nucleation Layer is published in Advanced Functional Materials.

The paper documents the team’s success in creating this simple, practical and effective method of depositing the films onto glass, and also reports how the optical properties can be fine tuned by perforating the film with tiny circular holes using something as simple as polystyrene balls. The University of Warwick research team has also had some early success in depositing ultra-thin films directly on plastic substrates, an important step towards realising the holy grail of truly flexible . This innovation is set to be exploited by Molecular Solar Ltd, a Warwick spinout company dedicated to commercialising the discoveries of its academic founders in the area of .

Explore further: New type of barcode could make counterfeiters' lives more difficult

Related Stories

Graphene electrodes for organic solar cells

Jan 06, 2011

A promising approach for making solar cells that are inexpensive, lightweight and flexible is to use organic (that is, carbon-containing) compounds instead of expensive, highly purified silicon. But one stubborn ...

Nanometer Graphene Makes Novel OLEDs Display

Mar 10, 2010

Researchers at Stanford University have successfully developed brand new concept of organic lighting-emitting diodes (OLEDs) with a few nanometer of graphene as transparent conductor. This paved the way for ...

Will carbon nanotubes replace indium tin oxide?

Mar 09, 2009

(PhysOrg.com) -- Up until now, George Grüner tells PhysOrg.com, most of the studies regarding the properties - and uses - of carbon nanotubes have been restricted to the visible spectral range. “We, however, were intere ...

Recommended for you

Making 'bucky-balls' in spin-out's sights

8 hours ago

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Polymer microparticles could help verify goods

Apr 13, 2014

Some 2 to 5 percent of all international trade involves counterfeit goods, according to a 2013 United Nations report. These illicit products—which include electronics, automotive and aircraft parts, pharmaceuticals, ...

New light on novel additive manufacturing approach

Apr 11, 2014

(Phys.org) —For nearly a century, electrophoretic deposition (EPD) has been used as a method of coating material by depositing particles of various substances onto the surfaces of various manufactured items. ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

TAz00
not rated yet Apr 06, 2011
Numbers?

More news stories

Physicists create new nanoparticle for cancer therapy

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

How kids' brain structures grow as memory develops

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...