New genetic tool helps researchers to analyze cells' most important functions

Apr 11, 2011

Although it has been many years since the human genome was first mapped, there are still many genes whose function we do not understand. Researchers from the University of Gothenburg, Sweden, and the University of Toronto, Canada, have teamed up to produce and characterize a collection of nearly 800 strains of yeast cells that make it possible to study even the most complicated of genes.

One common way of studying the role of in cells is to remove a gene and investigate the effect of the loss. Genes are very similar in both and people, which is one reason why the baker's and brewer's yeast has become a firm favourite with geneticists – and in yeast it is easy to make this kind of genetic change.

However, this does not work for many genes as the loss causes the cells to die. These are known as essential genes and are therefore difficult to study. This is a major problem for researchers as essential genes are often involved in crucial life processes. These essential genes are also the most well-conserved over long evolutionary distances, like between humans and yeast.

Together with researchers from the University of Toronto, Anders Blomberg and Jonas Warringer from the University of Gothenburg's Department of Cell- and Molecular Biology have produced a collection of nearly 800 strains of where the function of these essential genes can be studied. This new genetic tool is now being made available to other researchers.

"The trick is to use temperature-sensitive mutants for the genes you want to study," says professor Anders Blomberg. "These mutants have amino acid changes, which make the resultant protein sensitive to higher temperatures but able to function normally at normal temperatures. And at intermediary temperatures one can set the desired activity of the mutant protein."

The Gothenburg researchers have worked for many years on characterising the changes in yeast mutants that result from genetic changes or environmental factors automatically and on a large scale. They will continue to develop and characterize the new collection of yeast cells to facilitate the systematic analysis of the function of all essential genes.

Explore further: Vermicompost leachate improves tomato seedling growth

add to favorites email to friend print save as pdf

Related Stories

Wild about the evolution of domesticated yeast

Feb 12, 2009

(PhysOrg.com) -- It lives all around us and is probably one of the earliest domesticated organisms. Humans have been using it for tens of thousands of years. There is evidence that the Ancient Egyptians used it for baking ...

Gene-environment interaction in yeast gene expression

Apr 14, 2008

The nature vs. nurture debate is familiar to most people, and modern conclusions usually predict a balance between the two. A new paper published this week in the open-access journal PLoS Biology shows that there is a simi ...

Genetic mismatch keeps yeast species distinct

Jul 20, 2010

How species form and what keeps them distinct from each other, even though they can interbreed, is a key question in evolution. Researchers from Taiwan, led by Dr. Jun-Yi Leu, an Assistant Research Fellow from the Institute ...

Yeast 'rewired' to mate when starving

Dec 17, 2010

(PhysOrg.com) -- New research has found that the mating habits of the dairy yeast depends on the levels of nutrients available as well as the availability of cells of the opposite "sex."

Recommended for you

Vermicompost leachate improves tomato seedling growth

Nov 21, 2014

Worldwide, drought conditions, extreme temperatures, and high soil saline content all have negative effects on tomato crops. These natural processes reduce soil nutrient content and lifespan, result in reduced plant growth ...

Plant immunity comes at a price

Nov 21, 2014

Plants are under permanent attack by a multitude of pathogens. To win the battle against fungi, bacteria, viruses and other pathogens, they have developed a complex and effective immune system. And just as ...

Evolution: The genetic connivances of digits and genitals

Nov 20, 2014

During the development of mammals, the growth and organization of digits are orchestrated by Hox genes, which are activated very early in precise regions of the embryo. These "architect genes" are themselves regulated by ...

Surrogate sushi: Japan biotech for bluefin tuna

Nov 20, 2014

Of all the overfished fish in the seas, luscious, fatty bluefin tuna are among the most threatened. Marine scientist Goro Yamazaki, who is known in this seaside community as "Young Mr. Fish," is working to ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.