New genetic tool helps researchers to analyze cells' most important functions

Apr 11, 2011

Although it has been many years since the human genome was first mapped, there are still many genes whose function we do not understand. Researchers from the University of Gothenburg, Sweden, and the University of Toronto, Canada, have teamed up to produce and characterize a collection of nearly 800 strains of yeast cells that make it possible to study even the most complicated of genes.

One common way of studying the role of in cells is to remove a gene and investigate the effect of the loss. Genes are very similar in both and people, which is one reason why the baker's and brewer's yeast has become a firm favourite with geneticists – and in yeast it is easy to make this kind of genetic change.

However, this does not work for many genes as the loss causes the cells to die. These are known as essential genes and are therefore difficult to study. This is a major problem for researchers as essential genes are often involved in crucial life processes. These essential genes are also the most well-conserved over long evolutionary distances, like between humans and yeast.

Together with researchers from the University of Toronto, Anders Blomberg and Jonas Warringer from the University of Gothenburg's Department of Cell- and Molecular Biology have produced a collection of nearly 800 strains of where the function of these essential genes can be studied. This new genetic tool is now being made available to other researchers.

"The trick is to use temperature-sensitive mutants for the genes you want to study," says professor Anders Blomberg. "These mutants have amino acid changes, which make the resultant protein sensitive to higher temperatures but able to function normally at normal temperatures. And at intermediary temperatures one can set the desired activity of the mutant protein."

The Gothenburg researchers have worked for many years on characterising the changes in yeast mutants that result from genetic changes or environmental factors automatically and on a large scale. They will continue to develop and characterize the new collection of yeast cells to facilitate the systematic analysis of the function of all essential genes.

Explore further: Heaven scent: Finding may help restore fragrance to roses

Related Stories

Wild about the evolution of domesticated yeast

Feb 12, 2009

(PhysOrg.com) -- It lives all around us and is probably one of the earliest domesticated organisms. Humans have been using it for tens of thousands of years. There is evidence that the Ancient Egyptians used it for baking ...

Gene-environment interaction in yeast gene expression

Apr 14, 2008

The nature vs. nurture debate is familiar to most people, and modern conclusions usually predict a balance between the two. A new paper published this week in the open-access journal PLoS Biology shows that there is a simi ...

Genetic mismatch keeps yeast species distinct

Jul 20, 2010

How species form and what keeps them distinct from each other, even though they can interbreed, is a key question in evolution. Researchers from Taiwan, led by Dr. Jun-Yi Leu, an Assistant Research Fellow from the Institute ...

Yeast 'rewired' to mate when starving

Dec 17, 2010

(PhysOrg.com) -- New research has found that the mating habits of the dairy yeast depends on the levels of nutrients available as well as the availability of cells of the opposite "sex."

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.