Genetic mutation linked to lethal disease

Apr 18, 2011

Researchers have identified a genetic mutation found in the Ohio Amish population as the cause of a fatal developmental disease in fetuses and infants, according to research published in the April 8, 2011, issue of Science.

The genetic mutation is caused by a defect during the cellular protein-making process, causing microcephalic osteodysplastic primoridal type 1 (MOPD1), a rare developmental disorder that greatly slows in the uterus and causes severe brain and organ abnormalities, deformities of the arms and legs, and death in infancy or early childhood.

MOPD1 is seen throughout the world but this study found that the MOPD1-associated mutation is particularly prevalent in the Ohio Amish population, appearing in approximately 6 percent of the community.

Richard Padgett, Ph.D., Staff Researcher in the Department of in Cleveland Clinic's Lerner Research Institute, led the functional genetic portion of the study. The study was led by Albert de la Chapelle, M.D., Ph.D., Professor, Department of , Immunology and of The Ohio State University's Comprehensive Cancer Center.

The findings could lead to a test for people who unknowingly carry a copy of the mutation, a better understanding of RNA splicing, and information about whether these mutations that arise during an individual's lifetime contribute to the development of cancer or other diseases.

This research represents the first report of a human disease caused by mutations in a small RNA required for "splicing," a molecular process that removes regions of genetic material that are not expressed as proteins.

According to Padgett, "This study provides a solid example of the profound effect that RNA processing can have on disease. As a result, other disorders that share similar clinical features with MOPD1 may be more reliably diagnosed."

In an accompanying Perspectives article in the journal, Finnish researchers wrote, "The findings provide important genetic tools for diagnosing the disease and for counseling mutation carriers in affected families."

An arduous search by Dr. de la Chapelle's group for the genetic cause of MOPD1 identified a single mutation in the RNU4ATAC gene of affected Amish patients, as well as three other mutations in the RNU4ATAC gene in different groups of affected patients. They found that the MOPD1-associated mutation was present in 6 percent of the Ohio Amish population, while very rare in other groups.

Upon identifying the involvement of RNU4ATAC, the OSU group sought out the molecular genetic expertise of Padgett, who has studied , including U4atac snRNA, for many years. U4atac snRNA is essential for the correct expression of approximately 1 percent of human genes. Padgett's laboratory determined that the mutations identified in the MOPD1 patients resulted in U4atac snRNA that had lost over 90 percent of its activity. They also showed decreased splicing activity in cultured cells derived from Amish MOPD1 patients. Notably, this effect allowed correct diagnosis of the primary genetic defect causing this disease.

Explore further: First genetic link discovered to difficult-to-diagnose breast cancer sub-type

Provided by Lerner Research Institute

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Editing-molecule mutation causes fatal primordial dwarfism

Apr 07, 2011

Fetuses with defects in a molecular machine that edits information cells use to make proteins can develop a rare form of dwarfism, according to a new study led by researchers at the Ohio State University Comprehensive Cancer ...

Deadly genetic disease prevented before birth in zebrafish

Mar 20, 2008

By injecting a customized "genetic patch" into early stage fish embryos, researchers at Washington University School of Medicine in St. Louis were able to correct a genetic mutation so the embryos developed normally.

Recommended for you

Refining the language for chromosomes

Apr 17, 2014

When talking about genetic abnormalities at the DNA level that occur when chromosomes swap, delete or add parts, there is an evolving communication gap both in the science and medical worlds, leading to inconsistencies in ...

Down's chromosome cause genome-wide disruption

Apr 16, 2014

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

User comments : 0

More news stories

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Study says we're over the hill at 24

(Medical Xpress)—It's a hard pill to swallow, but if you're over 24 years of age you've already reached your peak in terms of your cognitive motor performance, according to a new Simon Fraser University study.

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.