Fungus study offers insights about biogeochemical cycling, bioremediation

Apr 25, 2011
Left: TEM cross section of Mn oxide on a hypha of the fungus, Plectosphaerella cucumerina. Right: HR-TEM image showing Mn oxide with a rumpled, sheet-like morphology.

Environmental Molecular Sciences Laboratory users helped fill a gap in the research community’s knowledge about the role of fungi and manganese (Mn) oxides in biogeochemical cycling and bioremediation.

Mn is a contaminant commonly found in coal mine drainage. Though high concentrations of soluble Mn, as the reduced Mn(II) ion, can be problematic, Mn oxides, whose formation is readily stimulated by bacteria and , can be quite helpful.

These highly reactive compounds play a role in the cycling of nutrients and carbon in the soil and water, and importantly, they can serve as bioremediating agents by scavenging metals.

Previous Mn studies have centered on bacteria, but the role of fungi in Mn(II) oxidation and subsequent Mn formation is just as important and was, therefore, the focus of EMSL collaborators from Harvard University—including EMSL Distinguished User Colleen Hansel— and the Stanford Synchrotron Radiation Light source (SSRL).

The research team fully characterized the Mn oxides produced by four different species of fungi isolated from coal mine drainage treatment systems in central Pennsylvania by integrating a broad suite of microscopy and spectroscopy tools, including high-resolution transmission electron microscopy (HR-TEM) equipped with energy-dispersive X-ray spectroscopy at EMSL and X-ray absorption spectroscopy at SSRL.

Their studies revealed that the species, growth conditions, and cellular structures of fungi influence the size, morphology, and structure—and, therefore, reactivity—of the Mn oxides. Their results underline the importance of species diversity in biogeochemical cycling and .

Explore further: The 'intraterrestrials': New viruses discovered in ocean depths

More information: Santelli CM, SM Webb, AC Dohnalkova, and CM Hansel. 2011. “Diversity of Mn oxides produced by Mn(II)-oxidizing fungi.” Geochimica et Cosmochimica Acta 75(10): 2762-2776 DOI:10.1016/j.gca.2011.02.022

Related Stories

What’s in an Isotope? Quite a Lot

Nov 16, 2006

A new technique developed by researchers at the Lamont-Doherty Earth Observatory now allows scientists to use an isotope of manganese not abundant on Earth to understand the record of millions of years of changes ...

Taking the mystery out of photosynthesis

Feb 10, 2011

(PhysOrg.com) -- An enigmatic protein system that uses sunlight and water to create fuel became a little less mysterious, thanks to scientists at Pacific Northwest National Laboratory, University of Michigan, ...

Long-distance communication, microbial style

Oct 06, 2010

Scientists knew that the microbe Shewanella oneidensis transformed the electronic structure of the iron oxide it touched in the ground as well as without direct contact. Scientists from Pacific Northwest National ...

Recommended for you

The vital question: Why is life the way it is?

1 hour ago

The Vital Question: Why is life the way it is? is a new book by Nick Lane that is due out on April 23rd. His question is not one for a static answer but rather one for a series of ever sharper explanations—explanations that a ...

Food poisoning: New detection method for bacterial toxin

2 hours ago

The Bacillus cereus bacteria is one of the potential causes of food poisoning. Indeed, a recent study in Analytical and Bioanalytical Chemistry shows that this versatile pathogen produces 19 different varian ...

Detailing heterochromatin formation at the onset of life

3 hours ago

Antoine Peters and his group at the Friedrich Miescher Institute for Biomedical Research (FMI) have elucidated the mechanisms controlling the packaging of chromatin in the early embryo. They have identified ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.