Fungus study offers insights about biogeochemical cycling, bioremediation

Apr 25, 2011
Left: TEM cross section of Mn oxide on a hypha of the fungus, Plectosphaerella cucumerina. Right: HR-TEM image showing Mn oxide with a rumpled, sheet-like morphology.

Environmental Molecular Sciences Laboratory users helped fill a gap in the research community’s knowledge about the role of fungi and manganese (Mn) oxides in biogeochemical cycling and bioremediation.

Mn is a contaminant commonly found in coal mine drainage. Though high concentrations of soluble Mn, as the reduced Mn(II) ion, can be problematic, Mn oxides, whose formation is readily stimulated by bacteria and , can be quite helpful.

These highly reactive compounds play a role in the cycling of nutrients and carbon in the soil and water, and importantly, they can serve as bioremediating agents by scavenging metals.

Previous Mn studies have centered on bacteria, but the role of fungi in Mn(II) oxidation and subsequent Mn formation is just as important and was, therefore, the focus of EMSL collaborators from Harvard University—including EMSL Distinguished User Colleen Hansel— and the Stanford Synchrotron Radiation Light source (SSRL).

The research team fully characterized the Mn oxides produced by four different species of fungi isolated from coal mine drainage treatment systems in central Pennsylvania by integrating a broad suite of microscopy and spectroscopy tools, including high-resolution transmission electron microscopy (HR-TEM) equipped with energy-dispersive X-ray spectroscopy at EMSL and X-ray absorption spectroscopy at SSRL.

Their studies revealed that the species, growth conditions, and cellular structures of fungi influence the size, morphology, and structure—and, therefore, reactivity—of the Mn oxides. Their results underline the importance of species diversity in biogeochemical cycling and .

Explore further: Team publishes evidence for natural alternative to antibiotic use in livestock

More information: Santelli CM, SM Webb, AC Dohnalkova, and CM Hansel. 2011. “Diversity of Mn oxides produced by Mn(II)-oxidizing fungi.” Geochimica et Cosmochimica Acta 75(10): 2762-2776 DOI:10.1016/j.gca.2011.02.022

add to favorites email to friend print save as pdf

Related Stories

What’s in an Isotope? Quite a Lot

Nov 16, 2006

A new technique developed by researchers at the Lamont-Doherty Earth Observatory now allows scientists to use an isotope of manganese not abundant on Earth to understand the record of millions of years of changes ...

Taking the mystery out of photosynthesis

Feb 10, 2011

(PhysOrg.com) -- An enigmatic protein system that uses sunlight and water to create fuel became a little less mysterious, thanks to scientists at Pacific Northwest National Laboratory, University of Michigan, ...

Long-distance communication, microbial style

Oct 06, 2010

Scientists knew that the microbe Shewanella oneidensis transformed the electronic structure of the iron oxide it touched in the ground as well as without direct contact. Scientists from Pacific Northwest National ...

Recommended for you

Researchers capture picture of microRNA in action

Oct 30, 2014

Biologists at The Scripps Research Institute (TSRI) have described the atomic-level workings of "microRNA" molecules, which control the expression of genes in all animals and plants.

Blocking a fork in the road to DNA replication

Oct 30, 2014

A team of Whitehead Institute scientists has discovered the surprising manner in which an enigmatic protein known as SUUR acts to control gene copy number during DNA replication. It's a finding that could shed new light on ...

Cell division, minus the cells

Oct 30, 2014

(Phys.org) —The process of cell division is central to life. The last stage, when two daughter cells split from each other, has fascinated scientists since the dawn of cell biology in the Victorian era. ...

A new method simplifies the analysis of RNA structure

Oct 30, 2014

To understand the function of an RNA molecule, similar to the better-known DNA and vital for cell metabolism, we need to know its three-dimensional structure. Unfortunately, establishing the shape of an RNA ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.