Fungus study offers insights about biogeochemical cycling, bioremediation

April 25, 2011
Left: TEM cross section of Mn oxide on a hypha of the fungus, Plectosphaerella cucumerina. Right: HR-TEM image showing Mn oxide with a rumpled, sheet-like morphology.

Environmental Molecular Sciences Laboratory users helped fill a gap in the research community’s knowledge about the role of fungi and manganese (Mn) oxides in biogeochemical cycling and bioremediation.

Mn is a contaminant commonly found in coal mine drainage. Though high concentrations of soluble Mn, as the reduced Mn(II) ion, can be problematic, Mn oxides, whose formation is readily stimulated by bacteria and , can be quite helpful.

These highly reactive compounds play a role in the cycling of nutrients and carbon in the soil and water, and importantly, they can serve as bioremediating agents by scavenging metals.

Previous Mn studies have centered on bacteria, but the role of fungi in Mn(II) oxidation and subsequent Mn formation is just as important and was, therefore, the focus of EMSL collaborators from Harvard University—including EMSL Distinguished User Colleen Hansel— and the Stanford Synchrotron Radiation Light source (SSRL).

The research team fully characterized the Mn oxides produced by four different species of fungi isolated from coal mine drainage treatment systems in central Pennsylvania by integrating a broad suite of microscopy and spectroscopy tools, including high-resolution transmission electron microscopy (HR-TEM) equipped with energy-dispersive X-ray spectroscopy at EMSL and X-ray absorption spectroscopy at SSRL.

Their studies revealed that the species, growth conditions, and cellular structures of fungi influence the size, morphology, and structure—and, therefore, reactivity—of the Mn oxides. Their results underline the importance of species diversity in biogeochemical cycling and .

Explore further: Manganese can keep toxic hydrogen sulfide zones in check in aquatic systems

More information: Santelli CM, SM Webb, AC Dohnalkova, and CM Hansel. 2011. “Diversity of Mn oxides produced by Mn(II)-oxidizing fungi.” Geochimica et Cosmochimica Acta 75(10): 2762-2776 DOI:10.1016/j.gca.2011.02.022

Related Stories

What’s in an Isotope? Quite a Lot

November 16, 2006

A new technique developed by researchers at the Lamont-Doherty Earth Observatory now allows scientists to use an isotope of manganese not abundant on Earth to understand the record of millions of years of changes to the Earth’s ...

Long-distance communication, microbial style

October 6, 2010

Scientists knew that the microbe Shewanella oneidensis transformed the electronic structure of the iron oxide it touched in the ground as well as without direct contact. Scientists from Pacific Northwest National Laboratory ...

Taking the mystery out of photosynthesis

February 10, 2011

(PhysOrg.com) -- An enigmatic protein system that uses sunlight and water to create fuel became a little less mysterious, thanks to scientists at Pacific Northwest National Laboratory, University of Michigan, and University ...

Recommended for you

New insights into the production of antibiotics by bacteria

July 31, 2015

Bacteria use antibiotics as a weapon and even produce more antibiotics if there are competing strains nearby. This is a fundamental insight that can help find new antibiotics. Leiden scientists Daniel Rozen and Gilles van ...

Out of the lamplight

July 31, 2015

The human body is governed by complex biochemical circuits. Chemical inputs spur chain reactions that generate new outputs. Understanding how these circuits work—how their components interact to enable life—is critical ...

Cell aging slowed by putting brakes on noisy transcription

July 30, 2015

Working with yeast and worms, researchers found that incorrect gene expression is a hallmark of aged cells and that reducing such "noise" extends lifespan in these organisms. The team published their findings this month in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.