How fish swim: Imaging device shows contribution of fins

Apr 22, 2011 By B. D. Colen
Using a new form of laser imaging device, Brooke Flammang and colleagues at Harvard’s Museum of Comparative Zoology have discovered that “the dorsal and the anal fin make a great contribution to the caudal [tail fin] wake,” and thus are additional propellers, and not just stabilizers. A cichlid swims in the particles that the laser illuminates. Credit: Brooke Flammang

There are fish tales and then there are fish tails. And a report from Harvard researchers in the current issue of the journal Biology Letters seems to demonstrate that previous theories about how bony fish move through the water were, well, just fish tales.

Scientists have long believed that sunfish, perch, trout, and other such bony propel themselves forward with the movement of their tails, while their dorsal and anal — the fins on their tops and bottoms — work primarily as stabilizers.

But using a new form of laser imaging device, Brooke Flammang and colleagues at Harvard’s Museum of Comparative Zoology (MCZ) have discovered that “the dorsal and the anal fin make a great contribution to the caudal [tail fin] wake,” and thus are additional propellers, and not just stabilizers.

Flammang’s group made this discovery with help from “a brand-new laser imaging device that allowed us to get an instantaneous three-dimensional view of the wake of a swimming fish.” Previous observations, she said, “have been made in two dimensions.”

Researchers used what Flammang called, with a laugh, “a treadmill for fish — it’s a giant Plexiglas tank with water circulated in one direction, and the fish moves at a speed controlled by the flow of the water.”

This video is not supported by your browser at this time.

White plastic particles, “almost like a powder,” are put into the water, and then “cameras record laser illumination of particles in water” as the fish swims against the current in the tank so that researchers can observe and record the wake of the fish — “which tells us the direction of thrust and how thrust is produced,” said Flammang, a postdoctoral fellow in the laboratory of George Lauder, the Henry Bryant Bigelow Professor of Ichthyology in Harvard’s Department of Organismic and Evolutionary Biology and curator of ichthyology at the MCV. (Flammang was a graduate student when she and her group did the work.)

The new laser device provides a three-dimensional view of the fish’s movement, Flammang said. With the new system researchers are able to get the entire volume of water being moved in each of multiple sequential photographic images.

“We knew the dorsal and anal fins are very important for balance, and although a locomotory role was suspected, we have only now been able to show that they also play a big part in locomotion,” Flammang said.

Explore further: DNA samples from fungi collections provide key to mushroom 'tree of life'

Related Stories

Robotic ghost knifefish is born (w/ Video)

Jan 19, 2011

(PhysOrg.com) -- Researchers at Northwestern University have created a robotic fish that can move from swimming forward and backward to swimming vertically almost instantaneously by using a sophisticated, ribbon-like fin.

Nothing fishy about sardine kill

Apr 05, 2011

Algal bloom specialist David Caron knows exactly what caused the death of 2.5 million sardines at King Harbor and is producing a paper on his research. The city of Redondo Beach gave him and his team a coin ...

Recommended for you

Estuaries protect Dungeness crabs from deadly parasites

16 hours ago

Parasitic worms can pose a serious threat to the Dungeness crab, a commercially important fishery species found along the west coast of North America. The worms are thought to have caused or contributed to ...

An evolutionary heads-up—the brain size advantage

17 hours ago

A larger brain brings better cognitive performance. And so it seems only logical that a larger brain would offer a higher survival potential. In the course of evolution, large brains should therefore win ...

Our bond with dogs may go back more than 27,000 years

May 21, 2015

Dogs' special relationship to humans may go back 27,000 to 40,000 years, according to genomic analysis of an ancient Taimyr wolf bone reported in the Cell Press journal Current Biology on May 21. Earlier genome ...

Social structure 'helps birds avoid a collision course'

May 21, 2015

The sight of skilful aerial manoeuvring by flocks of Greylag geese to avoid collisions with York's Millennium Bridge intrigued mathematical biologist Dr Jamie Wood. It raised the question of how birds collectively ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.