Ferromagnetism plus superconductivity

Apr 18, 2011

It seems impossible: Scientists from the Helmholtz-Zentrum Dresden-Rossendorf and the TU Dresden (Germany) were able to verify with an intermetallic compound of bismuth and nickel that certain materials actually exhibit the two contrary properties of superconductivity and ferromagnetism at the same time. A phenomenon that had only been demonstrated around the globe on a small number of materials and which might provide highly interesting technological opportunities in future.

Just in time for the 100th anniversary to commemorate the discovery of superconductivity by the Dutch physicist Heike Kamerlingh Onnes on April 8, 1911, scientists from the Helmholtz-Zentrum Dresden-Rossendorf and the TU Dresden published their research results in the journal Physical Review B.

Headed by Dr. Thomas Herrmannsdörfer, the team from the HZDR's High Magnetic Field Laboratory (HLD) examined a material consisting of the elements and nickel (Bi3Ni) with a diameter of only a few nanometers – which is unique since it has not been achieved elsewhere so far. This was made possible through a new chemical synthesis procedure at low temperatures which had been developed at the TU Dresden under the leadership of Prof. Michael Ruck. The nano scale size and the special form of the intermetallic compound – namely, tiny fibers – caused the physical properties of the material, which is non-magnetic under normal conditions, to change so dramatically. This is a particularly impressive example of the excellent opportunities modern nanotechnology can provide today, emphasizes Dr. Thomas Herrmannsdörfer. "It's really surprising to which extend the properties of a substance can vary if one manages to reduce their size to the nanometer scale."

There are numerous materials which become superconducting at ultralow temperatures. However, this property competes with which normally suppresses superconductivity. This does not happen with the analyzed compound: Here, the Dresden researchers discovered with their experiments in high magnetic fields and at ultralow temperatures that the nanostructured material exhibits completely different properties than larger-sized samples of the same material. What's most surprising: The compound is both ferromagnetic and superconducting at the same time. It is, thus, one of those rarely known materials which exhibit this unusual and physically not yet completely understood combination. Perhaps bismuth-3-nickel features a special type of , says Dr. Herrmannsdörfer. The physicist and doctoral candidate Richard Skrotzki, who has just turned 25, is making a vital contribution to the research results and describes the phenomenon as "the bundling of contrary properties in a single strand."

The TU Dresden and the HZDR are partners in the research alliance DRESDEN-concept which pursues the objective of making visible the excellence of Dresden research.

Explore further: Experiment with speeding ions verifies relativistic time dilation to new level of precision

More information: "Structure-induced coexistence of ferromagnetic and superconducting states of single-phase Bi3Ni seen via magnetization and resistance measurements" by T. Herrmannsdörfer, R. Skrotzki, J. Wosnitza, D. Köhler, R. Boldt, and M. Ruck as "Rapid Communication" in Physical Review B, Vol. 83, No.14 DOI: 10.1103/PhysRevB.83.140501

add to favorites email to friend print save as pdf

Related Stories

Three-dimensional polymer with unusual magnetism

Nov 13, 2006

Up to now it has not been possible to fabricate magnets from organic materials, like for example plastics. Recently, however, experiments at the Forschungszentrum Dresden-Rossendorf (Germany) in collaboration with an international ...

Magnetism relieves electrons of their resistance

Dec 13, 2010

(PhysOrg.com) -- Physics is sometimes just like a criminal investigation. Researchers gather one piece of evidence after another in order to solve a mystery - for example, the question as to how unconventional ...

Cleaner Fuel by Nanoparticles

Feb 06, 2007

Bulk molybdenum disulphide (MoS2) is a ubiquitous, standard solid lubricant. However, extremely small MoS2 nanoparticles have a potentially important application as a catalyst for producing sulphur-free fuels. I ...

Many roads lead to superconductivity

Sep 10, 2010

Since their discovery in 2008, a new class of superconductors has precipitated a flood of research the world over. Unlike the previously familiar copper ceramics (cuprates), the basic structure of this new class consists ...

Recommended for you

How Paramecium protozoa claw their way to the top

Sep 19, 2014

The ability to swim upwards – towards the sun and food supplies – is vital for many aquatic microorganisms. Exactly how they are able to differentiate between above and below in often murky waters is ...

User comments : 0