Electrons seem heavier in extremely thin silicon

Apr 01, 2011

For years now, transistors have been getting smaller and smaller. Research conducted by Jan-Laurens van der Steen of the MESA+ Institute for Nanotechnology at University of Twente, The Netherlands, has shown that electrons in silicon which is less than ten nanometres thick take on unusual characteristics.

To gain a better understanding of these nano-scale characteristics, he has worked on an accurate model which will play a very important role in the micro-electronics industry. He will defend his thesis on April 1st 2011 at the Faculty of , Mathematics and Computer Science.

Moore's Law states that the number of inside a chip will double every eighteen months. In order for this to happen, transistors need to become ever smaller. Jan-Laurens van der Steen's research at the University of Twente has been looking at what happens when thinner than ten nanometres are made, a scale which the industry will soon reach.

Van der Steen's research revealed that the characteristics of the material begin to change drastically, a phenomenon that is often encountered in . In silicon of this thickness, it turns out to be more difficult to move the free around. It seems as if the electrons become heavier compared to thick silicon samples. The research also showed that the mean free path of the electrons - the distance which they can move before they bump into something - gets shorter in thin silicon films.

In order to make use of these characteristics, it is important to be able to predict how nano-scale transistors will conduct electricity. Van der Steen has therefore developed a model which can explain these properties on both large and small scale structures. The model is known as a Single Scattering Model and is important for the development of the 11-nanometre CMOS generation and the even smaller generations to come.

Explore further: Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch

More information: Van der Steen's thesis is entitled Geometrical Scaling Effects on Carrier Transport in Ultrathin-Body MOSFETs.

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

For electronics beyond silicon, a new contender emerges

Sep 16, 2014

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

Sep 16, 2014

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

Sep 16, 2014

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

User comments : 0