Researchers use electron beams for chemical reactions

April 13, 2011
The principle of the local deposition process which is induced with a focussed electron beam (in short, FEBIP): molecules from a gas-injection system are deposited on the sample surface in a reversible manner. The focussed electron beam dissociates adsorbed gas molecules. The resulting non-volatile compounds remain permanently on the sample.

Electron microscopes use focussed electron beams to make extremely small objects visible. By combining the instrument with a gas-injection system material samples can be manipulated and surface structures measuring only nanometres across can be "written". Swiss researchers at EMPA, together with scientists from EPFL, used this method to improve lasers.

The vertical cavity surface emitting laser (VCSEL) is a semiconductor laser which is often used in data transmission for short-distance links like Gigabit Ethernet. These lasers are very popular in telecommunications because they consume little energy and can be simply fabricated in volumes of many tens of thousands on a single wafer. However, these VCSELs can exhibit one weakness: Because of the cylindrical structure in which the lasers are built up on the wafer, the polarisation of the emitted light can sometimes change during operation. Polarisation is a property of certain waves, such as , and it describes the direction of oscillation. A stable polarisation is necessary in order to reduce transmission errors and to use VCSELs in future .

The team led by Empa researcher Ivo Utke, together with scientists from the Laboratory of Physics of at EPFL, could provide assistance by using a method called FEBIP (focussed induced processing). “We’ve written flat grating structures on the VCSELs with an electron beam,” says Utke in describing their solution, “and the gratings were effective in stabilising the polarisation.” The study has recently been published in the scientific journal “Nanoscale” as an advanced online publication.

The result is a nanostructure - for example a polarisation grating on a VCSEL (vertical cavity surface emitting laser). These are semiconductor lasers frequently used in optical data transmission.

Small, minimally invasive, direct

FEBIP is suitable for prototyping nanocomponents, in order to solve specific questions and problems in applied nanoelectronics, nanophotonics and nanobiology. Suitable gas molecules are injected close to a sample which is already in the microscope’s vacuum chamber. These adsorb on the sample in a reversible manner. The focussed electron beam, which normally serves to make objects visible, now instead induces chemical reactions of the adsorbed gas molecules, but only at the spot where the beam strikes the surface. The resulting non-volatile molecular fragments then remain permanently on the sample while the volatile fragments are removed by the vacuum system. “With the help of a precisely positioned electron beam, it’s possible to remove or apply with nanometre precision and in virtually any desired three-dimensional shapes,” explains Utke. “FEBIP could soon become a true nanofabrication platform for rapid prototyping of nanostructures in a minimally invasive way, without necessitating the large investment of a clean room.”

Explore further: New VECSEL could mean a step forward for spectroscopy

More information: “Polarisation stabilisation of vertical cavity surface emitting lasers by minimally invasive focused electron beam triggered chemistry”, I. Utke, M. Jenke, C. Roeling, P. H. Thiesen, V. Iakovlev, A. Syrbu, A. Mereuta, A. Caliman, E. Kapon, Nanoscale (2011), DOI:10.1039/C1NR10047E

Related Stories

New VECSEL could mean a step forward for spectroscopy

October 25, 2010

( -- "Unfortunately, for spectroscopy, the beam quality of quantum cascade lasers is not satisfying," Hans Zogg tells "We are developing lasers for the mid-infrared range which have an especially ...

Damaging graphene to create a band gap

November 22, 2010

( -- "Graphene offers a lot of interesting potential applications for nanoelectronics," Florian Banhart tells, "but there is no band gap. This is a well-known problem. Without the band gap, switching ...

Simpler fabrication of nanogaps

February 10, 2011

Plasmons, which are density waves of electrons, are of great interest to pure and applied scientists because of their novel properties, and because of their application to sensing and photonic technologies. These applications ...

Scientists show atoms act like lasers

February 25, 2011

( -- Scientists from The Australian National University have developed an atom laser that behaves exactly like a light laser, opening up new possibilities in things like holograms.

Method for making nanowells drawn from a misunderstanding

March 15, 2011

( -- A safe, simple, and cheap method of creating perfectly etched micron and smaller size wells in a variety of substrates has been developed by researchers in Penn State’s Department of Chemical Engineering. ...

Better lasers for optical communications

April 12, 2011

A new laser procedure could boost optical fiber communications. This technique could become essential for the future expansion of the Internet. It also opens up new frontiers in basic research.

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.