More efficient fuel cell applications via nanotechnology

Apr 14, 2011
UC San Diego nanoengineering grad student Su-Wen Hsu is working on novel methods to boost fuel cell efficiency. His work will be displayed during Research Expo April 14.

(PhysOrg.com) -- Engineers at UC San Diego are using nanotechnology to increase the efficiency and enhance the performance of fuel cells, which could boost renewable energy options and reduce toxic emissions.

Current fuel cell efficiencies are significantly limited, in part due to an inhibitive reaction from a byproduct. The UC San Diego researchers have synthesized bimetallic nanoparticles (NPs), which are promising materials for fuel cell catalysis due to combined properties from two metals.

Nanoengineering grad student Su-Wen Hsu will highlight this work in his poster titled “Polyelectrolyte-Templated Galvanic Deposition for Bimetallic Nanoparticles” during Research Expoon April 14.

Hsu and his research team are using bimetallic NPs to optimize the performance of current fuel cell catalysts by enhancing the catalyst activity and selectivity.
A catalyst is a substance that increases the rate of a chemical reaction without being consumed or chemically altered, and does this by reducing the energy needed for the reaction to proceed. In order for fuel cells to become a viable economical solution, their catalytic processes must be optimized. For example, splitting water into hydrogen and oxygen to feed a is a highly desirable process, but catalytic activity for this system needs to be improved.

“We modified the surface charges of Ag NPs using differently charged polyelectrolytes and used these as templates for galvanic displacement with Au,” Hsu said. “Positively charged NPs generated hollow bimetallic shell structures, and negatively charged NPs generated porous and aggregated bimetallic structures.”

“The synergistic effect of Ag/Au NPs makes them excellent catalysts for CO oxidation and may lead to potential application in fuel cells,” added Hsu, whose advisor is UC San Diego nanoengineering professor Andrea Tao. “The ability to tailor NP morphology and composition will allow us to evaluate these bimetallic NPs as potential nanocatalysts for low-temperature reaction."

For Hsu and his team, they are one step closer to advancing the development of fuel cells, which may be used to power production in portable, stationary and transportation applications like consumer electronics, residential units and specialty vehicles. is expected to improve material properties, the functionality and performance of components, and decrease the price of fuel cells.

“There are many special properties in nano-size material compared with bulk material. This is the most interesting part in nanoengineering,” Hsu said. “I hope I can understand this area more. In the future, we will measure some properties of the bimetallic nanoparticles to prove those bimetallic NPs can be used in catalyst in different areas."

Explore further: The simplest element: Turning hydrogen into 'graphene'

Provided by Jacobs School of Engineering

not rated yet
add to favorites email to friend print save as pdf

Related Stories

How do nanoparticles impact our environment and us?

Nov 11, 2010

We are seeing an increased availability of nanoparticle-containing products on the market. During production, use and disposal they affect both our environment and us. Sometimes the interactions are remarkable.

Argonne to study fuel cell catalysts

May 26, 2005

Argonne National Laboratory will receive $3 million over three years for basic science studies that may lead to improved catalysts for hydrogen fuel cells.

Recommended for you

The simplest element: Turning hydrogen into 'graphene'

Dec 16, 2014

New work from Carnegie's Ivan Naumov and Russell Hemley delves into the chemistry underlying some surprising recent observations about hydrogen, and reveals remarkable parallels between hydrogen and graphene ...

Future batteries: Lithium-sulfur with a graphene wrapper

Dec 16, 2014

What do you get when you wrap a thin sheet of the "wonder material" graphene around a novel multifunctional sulfur electrode that combines an energy storage unit and electron/ion transfer networks? An extremely ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.