More efficient fuel cell applications via nanotechnology

April 14, 2011
UC San Diego nanoengineering grad student Su-Wen Hsu is working on novel methods to boost fuel cell efficiency. His work will be displayed during Research Expo April 14.

(PhysOrg.com) -- Engineers at UC San Diego are using nanotechnology to increase the efficiency and enhance the performance of fuel cells, which could boost renewable energy options and reduce toxic emissions.

Current fuel cell efficiencies are significantly limited, in part due to an inhibitive reaction from a byproduct. The UC San Diego researchers have synthesized bimetallic nanoparticles (NPs), which are promising materials for fuel cell catalysis due to combined properties from two metals.

Nanoengineering grad student Su-Wen Hsu will highlight this work in his poster titled “Polyelectrolyte-Templated Galvanic Deposition for Bimetallic Nanoparticles” during Research Expoon April 14.

Hsu and his research team are using bimetallic NPs to optimize the performance of current fuel cell catalysts by enhancing the catalyst activity and selectivity.
A catalyst is a substance that increases the rate of a chemical reaction without being consumed or chemically altered, and does this by reducing the energy needed for the reaction to proceed. In order for fuel cells to become a viable economical solution, their catalytic processes must be optimized. For example, splitting water into hydrogen and oxygen to feed a is a highly desirable process, but catalytic activity for this system needs to be improved.

“We modified the surface charges of Ag NPs using differently charged polyelectrolytes and used these as templates for galvanic displacement with Au,” Hsu said. “Positively charged NPs generated hollow bimetallic shell structures, and negatively charged NPs generated porous and aggregated bimetallic structures.”

“The synergistic effect of Ag/Au NPs makes them excellent catalysts for CO oxidation and may lead to potential application in fuel cells,” added Hsu, whose advisor is UC San Diego nanoengineering professor Andrea Tao. “The ability to tailor NP morphology and composition will allow us to evaluate these bimetallic NPs as potential nanocatalysts for low-temperature reaction."

For Hsu and his team, they are one step closer to advancing the development of fuel cells, which may be used to power production in portable, stationary and transportation applications like consumer electronics, residential units and specialty vehicles. is expected to improve material properties, the functionality and performance of components, and decrease the price of fuel cells.

“There are many special properties in nano-size material compared with bulk material. This is the most interesting part in nanoengineering,” Hsu said. “I hope I can understand this area more. In the future, we will measure some properties of the bimetallic nanoparticles to prove those bimetallic NPs can be used in catalyst in different areas."

Explore further: Argonne to study fuel cell catalysts

Related Stories

Argonne to study fuel cell catalysts

May 26, 2005

Argonne National Laboratory will receive $3 million over three years for basic science studies that may lead to improved catalysts for hydrogen fuel cells.

Going platinum: New catalyst could boost cleaner fuel use

May 14, 2009

(PhysOrg.com) -- Material scientists at Washington University in St. Louis have developed a technique for a bimetallic fuel cell catalyst that is efficient, robust and two to five times more effective than commercial catalysts. ...

How do nanoparticles impact our environment and us?

November 11, 2010

We are seeing an increased availability of nanoparticle-containing products on the market. During production, use and disposal they affect both our environment and us. Sometimes the interactions are remarkable.

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.