Research leads to understanding of how crops deal with stress -- yield's biggest enemy

Apr 25, 2011

Like people, plants experience stress. And also, like people, the response to that stress can determine success.

People can exercise, or rest, or talk about the problem.

For plants, ways to deal with stress are internal. And ISU researchers are trying to understand how they do it.

Stephen Howell is a professor of genetics, development and and former director of the Plant Sciences Institute at ISU. His research is featured in the current issue of the journal .

"We've discovered a new arm of the pathway by which plants activate a response to environmental stress," he said.

Adverse environmental conditions, such as drought, flood, heat and other stresses, affect yield more than and diseases. Finding a way to maintain high yields for plants under stress is a goal of plant breeders and other agriculture stakeholders, said Howell.

"These are environmental stresses that the farmers can't control," Howell said. "They are acts of nature. And now seed companies are interested in trying to equip plants with the ability to tolerate stress."

Plant cells produce proteins and ship them to different parts of the cell.

During production and shipment, these proteins move through an area of the cell called the endoplasmic reticulum (ER).

Under normal conditions, these proteins are folded into their normal, healthy three-dimensional structures as they are produced.

When a plant is under stress, its cells produce poorly folded or unfolded proteins. Inside the ER, a built-in, quality-control system senses this and "sets off an alarm in the cell," said Howell.

In response to the alarm, another protein (IRE1) cuts apart an important RNA molecule, but then splices it back together to create a different sequence.

This cut-and-splice event activates a cascade of whose products bring about internal defensive measures that help the plant survive.

"As it turns out, responses that are activated under stress conditions actually inhibit the growth of plants," said Howell. "This allows them to conserve their energy to survive the stress conditions."

For plants in the wild, this response is a survival tactic, he said.

In production agriculture crops, however, these responses reduce yields.

"You don't want crop plants to [stop growing]," Howell said. "You want them to continue to grow and produce even though they are under stress."

With the new understanding of this stress response pathway, Howell says, the next step may be to silence the alarm system.

"What may be important is to disable some of these stress responses," said Howell. "That may make the plant be more productive under stress conditions."

Explore further: The origin of the language of life

Related Stories

Research May Help Plants, Humans Survive Stress, Disease

Oct 27, 2009

(PhysOrg.com) -- New technology to analyze gene expression at the level of different cell types offers new insights in the ways that plants and animals react to the environment and how they change when they ...

Recommended for you

The origin of the language of life

Dec 19, 2014

The genetic code is the universal language of life. It describes how information is encoded in the genetic material and is the same for all organisms from simple bacteria to animals to humans. However, the ...

Quest to unravel mysteries of our gene network

Dec 18, 2014

There are roughly 27,000 genes in the human body, all but a relative few of them connected through an intricate and complex network that plays a dominant role in shaping our physiological structure and functions.

EU court clears stem cell patenting

Dec 18, 2014

A human egg used to produce stem cells but unable to develop into a viable embryo can be patented, the European Court of Justice ruled on Thursday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.