Research leads to understanding of how crops deal with stress -- yield's biggest enemy

Apr 25, 2011

Like people, plants experience stress. And also, like people, the response to that stress can determine success.

People can exercise, or rest, or talk about the problem.

For plants, ways to deal with stress are internal. And ISU researchers are trying to understand how they do it.

Stephen Howell is a professor of genetics, development and and former director of the Plant Sciences Institute at ISU. His research is featured in the current issue of the journal .

"We've discovered a new arm of the pathway by which plants activate a response to environmental stress," he said.

Adverse environmental conditions, such as drought, flood, heat and other stresses, affect yield more than and diseases. Finding a way to maintain high yields for plants under stress is a goal of plant breeders and other agriculture stakeholders, said Howell.

"These are environmental stresses that the farmers can't control," Howell said. "They are acts of nature. And now seed companies are interested in trying to equip plants with the ability to tolerate stress."

Plant cells produce proteins and ship them to different parts of the cell.

During production and shipment, these proteins move through an area of the cell called the endoplasmic reticulum (ER).

Under normal conditions, these proteins are folded into their normal, healthy three-dimensional structures as they are produced.

When a plant is under stress, its cells produce poorly folded or unfolded proteins. Inside the ER, a built-in, quality-control system senses this and "sets off an alarm in the cell," said Howell.

In response to the alarm, another protein (IRE1) cuts apart an important RNA molecule, but then splices it back together to create a different sequence.

This cut-and-splice event activates a cascade of whose products bring about internal defensive measures that help the plant survive.

"As it turns out, responses that are activated under stress conditions actually inhibit the growth of plants," said Howell. "This allows them to conserve their energy to survive the stress conditions."

For plants in the wild, this response is a survival tactic, he said.

In production agriculture crops, however, these responses reduce yields.

"You don't want crop plants to [stop growing]," Howell said. "You want them to continue to grow and produce even though they are under stress."

With the new understanding of this stress response pathway, Howell says, the next step may be to silence the alarm system.

"What may be important is to disable some of these stress responses," said Howell. "That may make the plant be more productive under stress conditions."

Explore further: Synbreed project bridges the gap between animal and plant breeding

Related Stories

Research May Help Plants, Humans Survive Stress, Disease

Oct 27, 2009

(PhysOrg.com) -- New technology to analyze gene expression at the level of different cell types offers new insights in the ways that plants and animals react to the environment and how they change when they ...

Recommended for you

Protecting crops from radiation-contaminated soil

14 hours ago

Almost four years after the accident at the Fukushima Daiichi Nuclear Power Plant in Japan, farmland remains contaminated with higher-than-natural levels of radiocesium in some regions of Japan, with cesium-134 ...

Activating genes on demand

Mar 04, 2015

When it comes to gene expression - the process by which our DNA provides the recipe used to direct the synthesis of proteins and other molecules that we need for development and survival - scientists have ...

Metabolic path to improved biofuel production

Mar 04, 2015

Researchers with the Energy Biosciences Institute (EBI), a partnership that includes the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley, have found a way ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.