Copper ions as morphogens for the formation of polymer films by click chemistry

April 29, 2011

( -- Scientists are envious of nature because of its ability to build up highly complex structures like organs and tissues in an ordered fashion without any problem; it takes a great deal of effort for scientists to produce defined microscale structures. Pierre Schaaf and a team of scientists from Strasbourg have now imitated a few of nature’s tricks in order to get a polymer film to "grow" onto a surface. As the researchers report in the journal Angewandte Chemie, they used morphogens as nature does. These signal molecules show a reaction which way it should go.

The growth of our bones, seashells, or the complicated forms of diatoms, requires the processes involved in biomineralization to occur along precisely controlled tracks. Molecules cannot simply be allowed to react in an uncontrolled fashion as soon as they encounter each other. In order for a complex organism to develop, every individual cell must know where it is located within a growing organ. Special signal molecules called morphogens inform the cell. They are formed in a specific location and then spread out into the surrounding tissue. This results in concentration gradients, which the cells can use to "orient" themselves.

Schaaf and his co-workers chose a similar strategy to form thin films on a substrate. They also used a sort of morphogen to steer the process. The reactants involved were polymers, one containing azide groups (–N3) and the other with alkyne groups (–C≡CH) as side chains. In the presence of positively charged copper (CuI), these groups react with each other to form a carbon- and nitrogen-containing five-membered ring, crosslinking the polymers. This type of reaction is called “click chemistry”, because the reaction partners simply snap together.

In a solution containing both click partner and CuI ions, the reaction would immediately proceed at random. This would not result in a thin film. The scientists’ idea was thus to place the CuI ions as a morphogen only on the to be coated. Their approach was to place CuII ions in the solution. They then applied an electric voltage to the surface. When CuII ions come into contact with this surface, they take an electron to become CuI. These are thus primarily to be found on the surface. Where there are CuI ions, the click reaction can proceed; the polymers only crosslink into a continuous film on the surface. The magnitude of the applied voltage can be used to control the number of CuI ions and thus the thickness of the film.

Explore further: Artificial Cells

More information: Pierre Schaaf, Electrochemically Triggered Film Formation by Click Chemistry, Angewandte Chemie International Edition 2011, 50, No. 19, 4374–4377,

Related Stories

Artificial Cells

November 10, 2005

Do cells always have to be developed from organic carbon-containing compounds? When resourceful scientists stretch their imaginations, they quickly find an answer to this question. This is demonstrated by the work of Achim ...

Clicking synthetic and biological molecules together

February 19, 2008

Dutch researcher Joost Opsteen has developed a method to click polymers together in a controlled manner. Using this method, he can even attach proteins to nanoballs. For instance, this approach could be used to transport ...

Mini-Donut Catches Chloride Ions

March 11, 2008

Ions—charged atoms or molecules—play an important role in nature, in our bodies as well as for science and technology. It is often necessary to trap, remove, mask, stabilize, or transport ions, whether in the body or ...

Researchers electrify polymerization

March 31, 2011

Scientists led by Carnegie Mellon University chemist Krzysztof Matyjaszewski are using electricity from a battery to drive atom transfer radical polymerization (ATRP), a widely used method of creating industrial plastics. ...

Recommended for you

The universe's most miraculous molecule

October 9, 2015

It's the second most abundant substance in the universe. It dissolves more materials than any other solvent. It stores incredible amounts of energy. Life as we know it would not be possible without it. And although it covers ...

New method facilitates research on fuel cell catalysts

October 8, 2015

While the cleaning of car exhausts is among the best known applications of catalytic processes, it is only the tip of the iceberg. Practically the entire chemical industry relies on catalytic reactions. Therefore, catalyst ...

Trio wins Nobel Prize for mapping how cells fix DNA damage

October 7, 2015

Tomas Lindahl was eating his breakfast in England on Wednesday when the call came—ostensibly, from the Royal Swedish Academy of Sciences. It occurred to him that this might be a hoax, but then the caller started speaking ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Apr 30, 2011
Good idea, now put a layer of powdered graphite on top of the poly film and a metal plate and you have a super capacitor for storing electrical energy.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.