Ends of chromosomes protected by stacked, coiled DNA caps, study finds

Apr 20, 2011
An end-on view of a G-quadruplex. Image by Julian Huppert.

(PhysOrg.com) -- Researchers at the University of Pennsylvania School of Medicine are delving into the details of the complex structure at the ends of chromosomes. Recent work, e-published in Nature Structural & Molecular Biology last month, describes how these structures, called telomeres, can be protected by caps made up of specialized proteins and stacks of DNA called G-quadruplexes, or "G4 DNA." Telomere caps are like a knot at the end of each chromosome “string,” with the knot's role preventing the string from unraveling.

"Although G4 DNA has been studied in test tubes for years, we did not know whether it could contribute to telomere protection in actual cells until we performed our studies in yeast cells," stated F. Brad Johnson, MD, PhD, associate professor of Pathology and Laboratory Medicine.

The composition of the particular G4-molecular "knot" studied is complex and unusual, involving a DNA sequence with guanine building blocks that loop back and forth on top of each other to form a four-stranded stack, which is different from the two-stranded arrangement of typical DNA molecules. The stack protects the chromosome from unraveling by specialized enzymes.

The length of telomeres is associated with age. Shortened telomeres are observed in aging cells and in some rare syndromes. There is mounting evidence that loss of telomere capping may contribute to some diseases that become more common with natural aging. An example of extreme aging associated with telomere defects is Werner syndrome, a rare genetic disease in which individuals develop normally until puberty. After this they age rapidly, so that by age 40 or so they often appear several decades older.

The protein missing in people with Werner syndrome but present in healthy people, is a helicase, an enzyme that unzips DNA. A slightly different G4-unwinding helicase is missing in people with a related disease, called Bloom syndrome, which is characterized by chromosome instability and high rates of cancer. It's possible that changes in G4 DNA contribute to the symptoms of these two syndromes.

The normal unwinding of DNA is critical under many particular circumstances, for example during replication. There are hundreds of different types DNA helicases in human cells, and each unwinds DNA under different circumstances. Although it is important to keep the strands of DNA together most of the time, if they can’t be unwound when needed, serious problems could occur.

The Penn researchers hope to eventually explore the role of G4 capping in human aging after they know more about the G4 cap in yeast cells, which are easy to study because they can be engineered to make very specific changes in their DNA and proteins.

Recently, Johnson's group found that DNA sequences with the potential to form G4 DNA, which exist not only at telomeres but also at many locations throughout the entire human genome, are closely connected to changes in gene expression in cells from people with Werner or Bloom syndrome. They predict that G4 DNA abnormalities also exist at the telomeres in these human diseases and perhaps those of aging cells.

In their experiments in which telomeres were specifically examined in yeast, both elevated levels of G4 binding protein and inactivation of the yeast helicase that is similar to the one missing in human Werner and Bloom syndrome patients led to increased protection of the telomeres. This suggested that the G4 caps were present on the telomeres and that they protected the telomere from breaking down.

The overall role of G4 DNA is not simple and might seem to be contradictory. For example, work from several other research groups has suggested that G4 DNA can interfere with the replication and capping of telomeres, in contrast to the protective role observed by Johnson's group.

"This points out the complexity of G4 DNA," said Johnson. "On one hand, some G4 DNA may help cap telomeres, but too much G4 DNA or formation of G4 DNA at the wrong times or places may be detrimental. G4 DNA is not a single thing, but is rather a family of related structures, and so it might be possible to target particular types of G4 DNA to, for example, improve telomere capping in normal cells or disrupt the growth of cancer . This is a very new field, and it will be fun to see how far it might go."

Explore further: Mycologist promotes agarikon as a possibility to counter growing antibiotic resistance

More information: www.nature.com/nsmb/journal/v1… 4/abs/nsmb.2033.html

Related Stories

Common weed could provide clues on aging and cancer

Oct 26, 2009

A common weed and human cancer cells could provide some very uncommon details about DNA structure and its relationship with telomeres and how they affect cellular aging and cancer, according to a team led by scientists from ...

Size Matters - When it Comes to DNA

Jun 09, 2010

(PhysOrg.com) -- A new study at the University of Leicester is examining a sequence of DNA- known as telomeres - that varies in length between individual.

Telomere length affects colorectal cancer risk

Oct 28, 2010

For the first time, researchers have found a link between long telomeres and an increased risk for colorectal cancer, according to research presented at the American Association for Cancer Research special conference on Colorectal ...

Why chromosomes never tie their shoelaces

Sep 08, 2010

In the latest issue of the journal Nature, Miguel Godinho Ferreira, Principal Investigator at the Instituto Gulbenkian de Ciencia (IGC) in Portugal, lead a team of researchers to shed light on a paradox that has puzzled biolog ...

Recommended for you

YEATS protein potential therapeutic target for cancer

Oct 23, 2014

Federal Express and UPS are no match for the human body when it comes to distribution. There exists in cancer biology an impressive packaging and delivery system that influences whether your body will develop cancer or not.

Precise and programmable biological circuits

Oct 23, 2014

A team led by ETH professor Yaakov Benenson has developed several new components for biological circuits. These components are key building blocks for constructing precisely functioning and programmable bio-computers.

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

kevinrtrs
1 / 5 (6) Apr 21, 2011
This points out the complexity of G4 DNA, said Johnson. On one hand, some G4 DNA may help cap telomeres, but too much G4 DNA or formation of G4 DNA at the wrong times or places may be detrimental.

The more complex it gets, the smaller the already minute chance of things evolving from one ancestor into the complex life organisms around us at the moment. In fact, without a creator, life cannot start all by itself through random spontaneous physical/chemical processes. Believing that life did arise by accident is worse than believing in fairytales.

What the researchers will eventually come up with is such a complex and ambiguous outcome that it will simply make evolution [the one ancestor fable] look plain foolish.
Ethelred
5 / 5 (1) Apr 21, 2011
The more complex it gets
The more evidence we have that evolution produces complexity. Which the fossil record shows.

So Kevin, when was that Flood you don't like talking about? Where is all the evidence that MUST BE THERE that the world is young and had a Great Flood?

You fear of these questions has been noted.

Ethelred
Byagam_Gokulden
5 / 5 (2) Apr 21, 2011
In fact, without a creator, life cannot start all by itself through random spontaneous physical/chemical processes.


What happens may seem a bit random, but how it happens is entirely governed by the four physical forces and the amount and sort of matter available.

You are imposing your opinion of what life is on what the scientific definition of life is: carbon chemistry under the right physical constraints.

DNA doesn't contain coded information by some conscious coder, the molecule sequence just causes formation of other molecules due to adequate physical pressure and chemical gradient differences: physicochemical form (or structure) is synonymous to function. Try every possible permutation and surprise surprise, only the most stable and/or quickly replicating molecules will survive.
CSharpner
5 / 5 (1) Apr 21, 2011
In fact, without a creator, life cannot start all by itself through random spontaneous physical/chemical processes.

Show us your work that proves this or at least mathematically suggests this is impossible.

Then, explain how, in a a 6000 year old universe, we can see objects BILLIONS of light years away.

POOF! I just made Kev disappear.