Chemists design new polymer structures for use as 'plastic electronics'

Apr 28, 2011
Malika Jeffries-EL and her Iowa State University research group are studying polymers that can conduct electricity. Credit: Photo by Bob Elbert/Iowa State University

Iowa State University's Malika Jeffries-EL says she's studying doing structure-property studies so she can teach old polymers new tricks.

Those tricks improve the properties of certain organic polymers that mimic the properties of traditional inorganic semiconductors and could make the polymers very useful in , light-emitting diodes and thin-film transistors.

Conductive polymers date back to the late 1970s when researchers Alan Heeger, Alan MacDiarmid and Hideki Shirakawa discovered that plastics, with certain arrangements of atoms, can conduct electricity. The three were awarded the 2000 Nobel Prize in Chemistry for the discovery.

Jeffries-EL, an Iowa State assistant professor of chemistry, is working with a post-doctoral researcher and nine doctoral students to move the field forward by studying the relationship between polymer structures and the electronic, physical and optical properties of the materials. They're also looking for ways to synthesize the polymers without the use of harsh acids and temperatures by making them soluble in .

The building blocks of their work are a variety of benzobisazoles, molecules well suited for electrical applications because they efficiently transport electrons, are stable at and can absorb photons.

And if the polymers are lacking in any of those properties, Jeffries-EL and her research group can do some chemical restructuring.

"With these polymers, if you don't have the properties you need, you can go back and change the wheel," Jeffries-EL said. "You can change the and produce what's missing."

That, she said, doesn't work with silicon and other for semiconductors: "Silicon is silicon. Elements are constant."

The National Science Foundation is supporting Jeffries-EL's polymer research with a five-year, $486,250 Faculty Early Career Development grant. She also has support from the Iowa Power Fund (a state program that supports energy innovation and independence) to apply organic semiconductor technology to solar cells.

The research group is seeing some results, including peer-reviewed papers over the past two years in Physical Chemistry Chemical Physics, Macromolecules, the Journal of Polymer Science Part A: Polymer Chemistry, and the Journal of Organic Chemistry.

"This research is really about fundamental science," Jeffries-EL said. "We're studying the relationships between structure and material properties. Once we have a with a certain set of properties, what can we do?"

She and her research group are turning to the molecules for answers.

"In order to realize the full potential of these materials, they must be engineered at the molecular level, allowing for optimization of materials properties, leading to enhanced performance in a variety of applications," Jeffries-EL wrote in a research summary. "As an organic chemist, my approach to materials begins with small molecules."

Explore further: Biosensor may improve clinical diagnosis of influenza A

Related Stories

Discovery brings organic solar cells a step closer

Jan 15, 2009

Inexpensive solar cells, vastly improved medical imaging techniques and lighter and more flexible television screens are among the potential applications envisioned for organic electronics.

SSRL Aids Development of Plastic Electronics

May 04, 2006

For close to a decade, researchers have been trying to improve the performance of plastic semiconductors to the level of amorphous silicon—the semiconductor used in low-cost electronics such as photovoltaic ...

Researchers at UA developing next-gen conductive polymers

Dec 23, 2010

(PhysOrg.com) -- Conductive polymers, while not quite wonder materials, have the potential for being so and University of Akron polymer scientists and polymer engineers are focused on developing the next generation ...

Striding towards a new dawn for electronics

Sep 28, 2010

Conductive polymers are plastic materials with high electrical conductivity that promise to revolutionize a wide range of products including TV displays, solar cells, and biomedical sensors. A team of McGill University researchers ...

Three-dimensional polymer with unusual magnetism

Nov 13, 2006

Up to now it has not been possible to fabricate magnets from organic materials, like for example plastics. Recently, however, experiments at the Forschungszentrum Dresden-Rossendorf (Germany) in collaboration with an international ...

Recommended for you

Biosensor may improve clinical diagnosis of influenza A

21 minutes ago

Sensors based on special sound waves known as surface acoustic waves (SAWs) are capable of detecting tiny amounts of antigens of Influenza A viruses. Developed by A*STAR researchers, the biosensors have the ...

New chip makes testing for antibiotic-resistant bacteria faster, easier

17 hours ago

We live in fear of 'superbugs': infectious bacteria that don't respond to treatment by antibiotics, and can turn a routine hospital stay into a nightmare. A 2015 Health Canada report estimates that superbugs have already cost Canadians $1 billion, and are a "serious and growing issue." Each year two million people in the U.S. contract antibiotic-re ...

Researchers find 'decoder ring' powers in micro RNA

19 hours ago

MicroRNA can serve as a "decoder ring" for understanding complex biological processes, a team of New York University chemists has found. Their study, which appears in Proceedings of the National Academy of Sciences, points ...

DNA mutations get harder to hide

22 hours ago

Rice University researchers have developed a method to detect rare DNA mutations with an approach hundreds of times more powerful than current methods.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.