Chemistry on Mars reveals cooling rate

April 7, 2011 by Bob Yirka report
Chemistry on Mars reveals cooling rate
© 2011 David Baratoux

( -- French researchers from the University of Toulouse have published a paper in Nature, that describes how they used data from NASA's Mars Odyssey (currently orbiting the planet) to ascertain the amount of cooling that Mars has undergone over billions of years. Their work is part of an ongoing international process to reconstruct the geologic history of the Red Planet.

By studying thorium, silicon and iron concentrations in the (based on the data collected from onboard the Odyssey) David Baratoux, Michael Toplis and their colleagues have been able to deduce that has cooled by about 80°C (176°F) over the past two or three billion years, which some have noted is slower than that for Earth.

The researchers focused on twelve different volcanic plains on the Martian surface, each of a different age. Thorium, a radioactive element was chosen as one of the study agents due to the fact that when it’s heated it doesn’t get locked in with other elements, which makes it a good source of information for mantle temperatures when it is transported to the surface via volcanic activity (plus the fact that it continually emits gamma rays). Studying in the volcanic soil, on the other hand, helps to gauge melting depth; and iron can be used to help figure out how accurate the first two are.

The researchers were able to come to these conclusions because it is already well understood that the composition of magma pushed to the surface through melting of mantle rocks (creating volcanoes) is controlled by depth, temperature and pressure exerted before being forced to the surface. With data from the GRS they were able to measure the composition percentages of the studied elements and the degree of variation between them, and also to calculate the degree of melting; to which they were able to apply mathematical modeling that gave them the pace of cooling.

In addition to coming up with a reasonable estimate of planet cooling, the team also came up with evidence to suggest that Mar’s lithosphere is thickening.

By studying changing temperature patterns on Mars, and other planets, researchers hope to gain new insights into how our own planet might behave as the future unfolds.

Explore further: Mars breakthrough: Scientists uncover red planet's hot and steamy secrets

More information: David Baratoux et al., Thermal history of Mars inferred from orbital geochemistry of volcanic provinces, Nature (2011) doi:10.1038/nature09903

Related Stories

Mercury's shifting, rolling past

March 17, 2008

Patterns of scalloped-edged cliffs or lobate scarps on Mercury’s surface are thrust faults that are consistent with the planet shrinking and cooling with time. However, compression occurred in the planet’s early history ...

Device reveals more about Mars' atmosphere

October 12, 2010

Instruments designed by a UT Dallas professor to measure atmospheric components on the surface of Mars have uncovered important clues about the planet’s atmosphere and climate history.

Mapping Venus: Extreme makeover or plate tectonics?

March 22, 2010

( -- Venus and Earth have long been thought of as sister planets. Given its similar size and proximity to Earth in the inner Solar System, Venus might seem like a promising candidate for having a surface that ...

Mercury's shifting, rolling past

March 27, 2008

Patterns of scalloped-edged cliffs or lobate scarps on Mercury's surface are thrust faults that are consistent with the planet shrinking and cooling with time. However, compression occurred in the planet's early history and ...

Recommended for you

Gaia spies two temporarily magnified stars

October 28, 2016

While scanning the sky to measure the position of over one billion stars in our Galaxy, ESA's Gaia satellite has detected two rare instances of stars whose light was temporarily boosted by other celestial objects passing ...

More than 15,000 near-Earth objects and counting

October 28, 2016

The international effort to find, confirm and catalogue the multitude of asteroids that pose a threat to our planet has reached a milestone: 15 000 discovered – with many more to go.

How planets like Jupiter form

October 28, 2016

Young giant planets are born from gas and dust. Researchers of ETH Zürich and the Universities of Zürich and Bern simulated different scenarios relying on the computing power of the Swiss National Supercomputing Centre ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.