Looking to a bright, sunny future

Apr 27, 2011 By Michael Baum
Credit: Shutterstock/Markus Gann

What are the major technology challenges to future growth in the solar-cell industry? Where are the big-bang-for-the-buck R&D investment opportunities? These and other questions were put to a group of 72 internationally recognized experts in the field at a 2010 special workshop. Their conclusions are summarized in a new National Institute of Standards and Technology (NIST) publication on Photovoltaic Technologies for the 21st Century.

The workshop was led by a steering committee chaired by Roger G. Little, CEO, Spire Corporation, and Robert W. Collins, NEG Endowed Chair of Silicate and Materials Science, University of Toledo, and co-sponsored by NIST.

Photovoltaics—the generation of electric power by direct conversion of sunlight using ""—is a rapidly growing field. Conservative estimates predict a worldwide annual photovoltaic manufacturing capacity of 200 gigawatts (GW) by 2020. For comparison, the current global generating capacity for commercial nuclear power plants is estimated to be 377 GW. The United States currently has 8 percent of the manufacturing share of this market, but there are opportunities to double that or better, particularly through technological advances, according to the workshop report.

Workshop participants from industry, academia and government discussed the "Priority Challenges" for the four dominant photovoltaic technologies—crystalline silicon-based wafers, amorphous silicon and polycrystalline thin films, III-V multijunctions (a presently expensive but highly efficient technology that was first used in space applications), and more experimental excitonic and quantum-structured based technologies—and defined critical milestones on the path to solutions. Challenges range from reaching a better scientific understanding of the devices themselves to developing practical engineering data for determining optimal use of photovoltaics. Key questions include how can we simultaneously increase manufacturing yields, quality and performance of photovoltaic products; how can we better predict a solar cell's expected useful life and what are the connections between the properties of specific components and the performance of a final device; and how can we exploit this understanding to produce cheaper, more reliable and higher energy efficiency devices.

Recognizing that it's not all up to the researchers, the workshop also noted several institutional or policy-related issues for solar power, including increased availability of raw materials; better understanding and control of environmental impacts for the entire life-cycle of a photovoltaic installation; regulatory and tax policies that may needlessly hamper the growth of the market; and the need for better consumer information.

Explore further: Research shows how householders could stay warm for less simply by storing heat better

More information: The new publication, Foundations for Innovation: Photovoltaic Technologies for the 21st Century, is available online at events.energetics.com/NISTGran… pps_Solar_PV_web.pdf. The 32-page document summarizes for policy makers a considerably more detailed workshop report issued last year, Workshop Report: Grand Challenges for Advanced Photovoltaic Technologies and Measurements.

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Are electric cars greener? Depends on where you live

14 minutes ago

Long thought a thing of the future, electric cars are becoming mainstream. Sales in the United States of plug-in, electric vehicles nearly doubled last year. Credible forecasts see the number rising within ...

Building a better battery

2 hours ago

Imagine an electric car with the range of a Tesla Model S - 265 miles - but at one-fifth the $70,000 price of the luxury sedan. Or a battery able to provide many times more energy than today's technology ...

Researchers find way to turn sawdust into gasoline

6 hours ago

Researchers at KU Leuven's Centre for Surface Chemistry and Catalysis have successfully converted sawdust into building blocks for gasoline. Using a new chemical process, they were able to convert the cellulose ...

Nanodot team aims to charge phones in less than a minute

10 hours ago

The world of smartphone users, which is a very large base indeed, is ripe for better battery solutions and an Israel-based company has an attractive solution in store, in the form of nanodot batteries that ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.