Batteries for the future

Apr 22, 2011

One of the most important decisions facing designers of plug-in electric or hybrid vehicles is related to battery choice. Now, researchers at the Norwegian University of Science and Technology (NTNU) have used a life cycle analysis to examine three vehicle battery types to determine which does the best job of powering the vehicle while causing the least amount of environmental impact during its production.

Their results, published in the latest edition of the scientific journal Environmental Science and Technology, show that on a per-storage basis, the (NiMH) had the most , followed by the nickel cobalt manganese lithium-ion (NCM) and iron phosphate lithium-ion (LFP) batteries for all impacts considered, except ozone depletion potential. The researchers also found higher life cycle global warming emissions than have been previously reported.

The researchers, Guillaume Majeau-Bettez, a PhD candidate in NTNU's Industrial Ecology Program; Troy R. Hawkins, a researcher in the programme; and Anders Hammer Strømman, an associate professor in the program, conducted a life cycle analysis of the three battery types and looked at 11 different types of environmental impacts from their production. These impacts included everything from greenhouse gas emissions to freshwater ecotoxicity, freshwater eutrophication and human toxicity.

The researchers were surprised to find that except for ozone depletion potential, the NiMH battery performed significantly worse than the two Li-ion batteries for all impact categories. The researchers attributed this difference to the greater use phase efficiency of Li-ion relative to NiMH, and the fact that each kilogram of Li-ion battery is expected to store between 2 to 3 times more energy than the other battery types over the course of its lifetime.

"The NCM and LFP batteries contain at least an order of magnitude less nickel and virtually no rare earth metals," the researchers also observed. "Among Li-ion batteries, our analysis points to overall environmental benefits of LFP relative to NCM, which can be explained by a greater lifetime expectancy and the use of less environmentally intensive materials."

For all three batteries, the energy requirements for their manufacture were a major cause of greenhouse gas emissions. One component of the analysis demonstrated the environmental significance of using polytetrafluoroethylene as dispersant/binder in the electrode paste. Its production was responsible for more than 97% of the ozone depletion potential of all three batteries, along with 14 -15% of the greenhouse gas production from the two Li-ion batteries, mostly due to the halogenated methane emissions. The final shipping and the production of the cell containers, module packaging, separator material, and electrolyte contribute relatively little to causing environmental damage, with collectively less than 10% of any impact category.

The researchers also point out the importance of the choice of the functional unit for the life cycle analysis. While the production of NiMH causes the least greenhouse gas emissions impact per kilogram, its lower energy density makes it score worst both relative to its nominal energy capacity and the researchers' storage-based functional unit. Similarly, the greenhouse gas impacts of LFP and NCM production are roughly equal for a given mass or nominal energy capacity, but the greater life expectancy of LFP confers a net environmental advantage to this type of battery for a per-energy-delivered functional unit.

"A shift from NiMH to Li-ion may thus be viewed positively," the researchers concluded. "Though associated with important uncertainties, our results point to a higher than expected level of environmental impacts for the production and use of traction batteries. This inventory and life cycle analysis provide a basis for further benchmarking and focused development policies for the industry."

Explore further: After nuclear phase-out, Germany debates scrapping coal

Provided by Norwegian University of Science and Technology

5 /5 (2 votes)
add to favorites email to friend print save as pdf

Related Stories

New Hitachi Li-ion batteries to last ten years

Apr 09, 2010

(PhysOrg.com) -- Hitachi has announced they may be able to double the life of rechargeable lithium-ion (Li-ion) batteries through the development of a new cathode material. The material was developed in conjunction ...

'Greener' than expected

Aug 30, 2010

Battery powered cars will play a major role in future of mobility. What was not known so far, was how environmentally friendly the manufacture, operation and disposal of the batteries are. Empa researchers have now calculated ...

Recommended for you

Computer to simulate harbor porpoises

4 hours ago

Researchers at Aarhus University, Denmark, use a computer model to predict the impact of new offshore wind farms on the population of harbour porpoises in the North Sea. A consortium of international energy ...

Inclusive approach to comprehensive retrofitting project

10 hours ago

Cuatro de Marzo is a district in the southern part of the Spanish city of Valladolid. It is a dense residential area with 190 privately-owned dwellings, developed in 1955. The area is populated by a series ...

New battery technology for electric vehicles

Nov 21, 2014

Scientists at the Canadian Light Source are on the forefront of battery technology using cheaper materials with higher energy and better recharging rates that make them ideal for electric vehicles (EVs).

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Dave_Blizzard
not rated yet Apr 24, 2011
What does this mean? Is it English?
"The researchers attributed this difference to the greater use phase efficiency of Li-ion relative to NiMH"
beelize54
not rated yet Apr 24, 2011
The production of these batteries at large scales is very environmentally unfriendly and even more dirty, than the usage of gasoline motors. The cold fusion will make all these heavy and explosive batteries unnecessary - i.e. it will not only save the fossil fuels, it may save us from production & recycling of huge amount of toxic materials at the same moment.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.