Bacteria interrupted: Disabling coordinated behavior and virulence gene expression

Apr 21, 2011

New research reveals a strategy for disrupting the ability of bacteria to communicate and coordinate the expression of virulence factors. The study, published by Cell Press in the April 22nd issue of the journal Molecular Cell, may lead to the development of new antibacterial therapeutics.

Bacteria use a process called "" to synchronize group behaviors that promote pathogenesis. During the process of quorum sensing, bacteria communicate with one another via chemical signals called autoinducers. As the population increases, so do autoinducer concentrations. Interactions between autoinducers and their receptors control gene expression and underlie coordinated behavior within .

"Quorum sensing controls virulence factor expression in many clinically relevant pathogens, so quorum sensing antagonists that prevent virulence gene activation offer a potential route to novel antibacterial therapeutics," explains senior study author, Dr. Frederick M. Hughson, from Princeton University. "A handful of quorum sensing antagonists have in fact been discovered, but how they work has remained mysterious." Dr. Hughson's Princeton colleague and co-author of this report, Dr. Bonnie L. Bassler, had previously demonstrated that antagonizing quorum sensing could provide protection from quorum-sensing-mediated killing by the pathogenic bacteria Chromobacterium violaceum. However, before the full therapeutic potential of this approach can be realized, it is necessary to gain a better understanding of exactly how the antagonists disrupt quorum sensing.

Many , including Chromobacterium violaceum, use LuxR family DNA-binding proteins as quorum sensing receptors. In the absence of an autoinducer, LuxR proteins are unstable. However, when an autoinducer binds to LuxR it forms a stable complex that activates virulence genes. Using a battery of methods ranging from genetics to x-ray crystallography, the researchers discovered that the LuxR type protein CviR was potently antagonized by compounds that bound in place of the endogenous autoinducer. The antagonists, unlike the autoinducer, caused CviR to adopt an inactive "closed" conformation that was incapable of binding DNA.

The findings provide insight into the mechanisms that underlie successful antagonism of quorum sensing and may direct development of new antibacterial therapeutics aimed at interfering with bacterial communication. "We demonstrated one successful strategy for inactivating quorum sensing receptors using small drug-like molecules. Small molecules that function analogously to the we studied could be broadly useful for inhibiting other LuxR-type ," concludes Dr. Hughson. "Indeed, this strategy should be readily generalizable to other multi-domain proteins but has not, to our knowledge, previously been demonstrated."

Explore further: Researchers uncover secrets of internal cell fine-tuning

More information: Chen et al.: “A Strategy for Antagonizing Quorum Sensing.” Molecular Cell, April 22, 2011

add to favorites email to friend print save as pdf

Related Stories

Evolution of virulence regulation in Staphylococcus aureus

Oct 09, 2008

Scientists have gained insight into the complex mechanisms that control bacterial pathogenesis and, as a result, have developed new theories about how independent mechanisms may have become intertwined during evolution. The ...

Recommended for you

Researchers uncover secrets of internal cell fine-tuning

14 hours ago

New research from scientists at the University of Kent has shown for the first time how the structures inside cells are regulated – a breakthrough that could have a major impact on cancer therapy development.

Microscopic rowing—without a cox

15 hours ago

Many different types of cell, including sperm, bacteria and algae, propel themselves using whip-like appendages known as flagella. These protrusions, about one-hundredth of a millimetre long, function like ...

Illuminating the dark side of the genome

21 hours ago

Almost 50 percent of our genome is made up of highly repetitive DNA, which makes it very difficult to be analysed. In fact, repeats are discarded in most genome-wide studies and thus, insights into this part ...

User comments : 0