Study suggests another avenue for detecting Alzheimer's disease

Apr 01, 2011
Tau protein modified by acetylation is detected in neurofibrillary tangles from brains of patients with Alzhiemer's disease. Credit: David E. Hurtado, University of Pennsylvania School of Medicine

Researchers at the University of Pennsylvania School of Medicine have determined that a well-known chemical process called acetylation has a previously unrecognized association with one of the biological processes associated with Alzheimer's disease and related disorders. The findings were published in the latest issue of Nature Communications.

Tau is one of the primary disease proteins associated with a suite of . Tau proteins are expressed primarily in the where they help with the assembly and stability of microtubules, protein structures that are the backbone of the nerve-cell communication system.

"Acetylation was only detected in diseased brain tissue from patients with or frontotemporal degeneration, suggesting it may have a role in tau transformation linked to disease onset and progression," says senior author Virginia M.-Y. Lee, PhD, director of Penn's Center for Neurodegenerative Disease Research. "This suggests that one type of acetylation is a potential target for drug discovery and biomarker development for Alzheimer's and related tauopathies."

The researchers demonstrated that tau acetylation led to a loss of one of its major functions - to promote microtubule assembly, in addition to gaining a toxic function, pathological tau aggregation. Mass spectrometry analysis identified specific acetylation sites in the sequence that overlapped with known microtubule binding sequences, so acetylation may also play a role in faulty binding of tau to microtubules.

How normal tau becomes disengaged from microtubules to form disease-related clumps remains unknown. This study shows that acetylation is most likely another chemical modification implicated in neurodegenerative disorders to be explored as a potential way to detect and fight disease.

According to Lee, the next steps to follow up on this discovery are to pursue basic research into the mechanisms underlying this pathological acetylation of tau and its role in neurodegeneration in Alzheimer's disease and related tauopathies. In addition, she noted that "Our highest priority will be to find ways to translate these findings into better diagnostics and therapeutics for patients with Alzheimer's disease or frontotemporal degeneration."

Explore further: US scientists make embryonic stem cells from adult skin

Related Stories

Tau disrupts neural communication prior to neurodegeneration

Dec 22, 2010

A new study is unraveling the earliest events associated with neurodegenerative diseases characterized by abnormal accumulation of tau protein. The research, published by Cell Press in the December 22 issue of the journal ...

Immune system linked with accumulation of toxic tau protein

Oct 06, 2010

Cells that help to protect the central nervous system may also contribute to pathological changes in the brain. New research, published by Cell Press in the October 7th issue of the journal Neuron, provides mechanistic insigh ...

Recommended for you

Leeches help save woman's ear after pit bull mauling

23 hours ago

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

Apr 17, 2014

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

User comments : 0

More news stories

Treating depression in Parkinson's patients

A group of scientists from the University of Kentucky College of Medicine and the Sanders-Brown Center on Aging has found interesting new information in a study on depression and neuropsychological function in Parkinson's ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...