Antibiotic resistance spreads rapidly between bacteria

Apr 11, 2011
Antibiotic resistance-carrying plasmids from different bacteria can meet and exchange genetic material. The result is plasmids consisting of genes that have each been adapted to different bacterial species. This facilitates further adaptation and mobility, and consequently also the spread of antibiotic resistance between different bacterial species. Credit: Björn Norberg

The part of bacterial DNA that often carries antibiotic resistance is a master at moving between different types of bacteria and adapting to widely differing bacterial species, shows a study made by a research team at the University of Gothenburg in cooperation with Chalmers University of Technology. The results are published in an article in the scientific journal Nature Communications.

More and more bacteria are becoming resistant to our common antibiotics, and to make matters worse, more and more are becoming resistant to all known . The problem is known as multi-resistance, and is generally described as one of the most significant future threats to Antibiotic resistance can arise in bacteria in our environment and in our bodies. Antibiotic resistance can then be transferred to the bacteria that cause human diseases, even if the bacteria are not related to each other.

A large proportion of between bacteria takes place with the aid of what are known as conjugative plasmids, a part of the . A plasmid can only exist and multiply inside a cell, where it uses the cell's machinery, but can then be transferred to another cell and in that way spread between bacteria.

The research team has studied a group of the known carriers of : IncP-1 plasmids. Using advanced , the researchers have succeeded in mapping the origin of different IncP-1 plasmids and their mobility between different . "Our results show that plasmids from the IncP-1 group have existed in, and adapted to, widely differing bacteria. They have also recombined, which means that a single plasmid can be regarded as a composite jigsaw puzzle of genes, each of which has adapted to different bacterial species", says Peter Norberg, a researcher in the Institute of Biomedicine at the University of Gothenburg. This indicates very good adaptability and suggests that these plasmids can move relatively freely between, and thrive in, widely differing bacterial species.

"IncP-1 plasmids are very potent 'vehicles' for transporting antibiotic resistance genes between bacterial species. Therefore, it does not matter much in what environment, in what part of the world, or in what bacterial species antibiotic resistance arises. Resistance genes could relatively easily be transported from the original environment to bacteria that infect humans, through IncP-1 plasmids, or other plasmids with similar properties, as 'vehicles'," says Professor Malte Hermansson of the Department of Cell and Molecular Biology at the University of Gothenburg.

It has been known for some time that plasmids are important in the spread of antibiotic resistance. The research team's findings show that IncP-1 plasmids can move, and have moved, between widely differing bacterial species and in addition have interacted directly with one another, which can increase the potential for gene spreading.

Explore further: How plant cell compartments change with cell growth

add to favorites email to friend print save as pdf

Related Stories

Stealth technology maintains fitness after sex

Jan 12, 2007

Pathogens can become superbugs without their even knowing it, research published today in Science shows. 'Stealth' plasmids - circular 'DNA parasites' of bacteria that can carry antibiotic-resistance genes - produce a prot ...

Researchers unlock the secret of bacteria's immune system

Nov 04, 2010

A team of Université Laval and Danisco researchers has just unlocked the secret of bacteria's immune system. The details of the discovery, which may eventually make it possible to prevent certain bacteria from developing ...

Resistant gut bacteria will not go away by themselves

Jun 19, 2007

E. coli bacteria that have developed resistance to antibiotics will probably still be around even if we stop using antibiotics, as these strains have the same good chance as other bacteria of continuing to colonise the gut, ...

Researchers develop novel method to find new antibiotics

Nov 20, 2006

Bacteria are a cunning foe; at a worrisome rate, they are developing resistance to the current arsenal of antibiotic drugs. Without new drugs, society may be approaching a world reminiscent of the pre-antibiotic era, when ...

Research shows how bacteria communicate with each other

Mar 02, 2011

A pathway whereby bacteria communicate with each other has been discovered by researchers at the Hebrew University of Jerusalem. The discovery has important implications for efforts to cope with the spread ...

Bacterial 'sex' causes antibiotic resistance

Jun 11, 2009

Some disease-causing bacteria are becoming resistant to antibiotics because they have peculiar sex lives, say researchers publishing new results today in the journal Science. The new study helps scientists understand how ba ...

Recommended for you

How plant cell compartments change with cell growth

Aug 22, 2014

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

Aug 22, 2014

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

Aug 22, 2014

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

Aug 22, 2014

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 0