Worms strike see-saw balance in disease resistance

Mar 02, 2011

New research has shown that nematode worms have to trade-off resistance to different diseases, gaining resistance to one microbe at the expense of becoming more vulnerable to another. This finding, published in PLoS ONE today (2 March 2011), reveals that the worms, called C. elegans, have a much more complex immune system than was previously thought and shows how important such trade-offs are across the animal kingdom.

Dr Robin May from the University of Birmingham's School of Biosciences who worked on the study explains: "This finding was a real surprise. These worms have quite a simple , so when we deleted a gene which we already knew provided to a type of fungus; we were amazed to find that the worms became more resistant to Salmonella bacteria. It seems that evolving resistance to the fungus came at the cost of making the worms more vulnerable to other diseases.

"Whilst scientists have seen this phenomenon, where there is a see-saw balance between immunity to different diseases, in more complex animals before, it has never been shown in anything as simple as a worm. We think that this phenomenon evolved separately in C. elegans indicating that this trade off is important across the animal kingdom."

An immune system costs an animal a lot of energy to maintain and carries the risk of inadvertently damaging the host, as in the case of allergies. Because of this, animals have to balance the costs and benefits of immunity, so putting more resources into fighting off bacteria might increase susceptibility to viruses for example, or vice versa.

Dr May continues: "All animals live in a world of limited resources which means that evolution has to compromise. Being a successful animal means that evolution has struck the right balance. It seems in this instance it was important that these nematodes became resistant to fungi like Cryptococcus even if it cost them resistance to Salmonella."

The gene that the researchers deleted, lys-7, normally produces something called a lysozyme which works in the immune system to attack invading microbes. Although most lysozymes fend off bacterial infections, this particular version seems to protect against infection by a type of called neoformans which is also a pathogen of humans causing infections in people with weakened immune systems like AIDS patients.

Dr May continues: "We're not quite sure why losing this lysozyme makes the better equipped to fight off Salmonella. One possibility is that losing the gene gives other parts of immune system a boost, or perhaps Salmonella normally turns on its defence mechanisms in response to the presence of this lysozyme."

Professor Douglas Kell, BBSRC Chief Executive said "Work in simple model organisms can provide us with insights into fundamental biology that apply across the natural world. This research is a great example. Understanding how the immune system works and how it has evolved in different animals will be important in dealing with a number challenges facing society, from chronic inflammation reducing people's quality of life in old age, to crop pests developing resistance to pesticides."

Explore further: Improving the productivity of tropical potato cultivation

add to favorites email to friend print save as pdf

Related Stories

How the parasitic worm has turned

Jun 14, 2010

(PhysOrg.com) -- Parasites in the gut such as whipworm have an essential role in developing a healthy immune system, University of Manchester scientists have found.

Tomato stands firm in face of fungus

May 09, 2008

Scientists at the University of Amsterdam have discovered how to keep one’s tomatoes from wilting – the answer lies at the molecular level. The story of how the plant beat the pathogen, and what it means for combating ...

Gut-invading worms turn enemy T cells into friends

Sep 27, 2010

Intestinal worms sidestep the immune system by inducing the development of suppressive T cells, according to a study published on September 27th in the Journal of Experimental Medicine.

Aphid immune system aided by friendly bacteria

Aug 19, 2010

(PhysOrg.com) -- Conventional thinking says that animal immune systems have evolved to defend against harmful microorganisms, but a new Cornell study examines the role of friendly bacteria in shaping animal ...

Recommended for you

Building better soybeans for a hot, dry, hungry world

23 hours ago

(Phys.org) —A new study shows that soybean plants can be redesigned to increase crop yields while requiring less water and helping to offset greenhouse gas warming. The study is the first to demonstrate ...

Gene removal could have implications beyond plant science

23 hours ago

(Phys.org) —For thousands of years humans have been tinkering with plant genetics, even when they didn't realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, ...

Chrono, the last piece of the circadian clock puzzle?

Apr 15, 2014

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

User comments : 0

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

More vets turn to prosthetics to help legless pets

A 9-month-old boxer pup named Duncan barreled down a beach in Oregon, running full tilt on soft sand into YouTube history and showing more than 4 million viewers that he can revel in a good romp despite lacking ...

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...