Viruses teach researchers how to protect corn from fungal infection

Mar 09, 2011
Smut fungi are agents of disease responsible for significant crop losses worldwide. Principal Investigator, Dr. Thomas Smith and Research Associate Member, Dr. Dilip Shah at The Donald Danforth Plant Science Center collaborated on a project to develop a variety of corn that is highly resistant to corn smut caused by the fungus, Ustilago maydis. Credit: Donald Danforth Plant Science Center

Smut fungi are agents of disease responsible for significant crop losses worldwide. Principal Investigator, Dr. Thomas Smith and Research Associate Member, Dr. Dilip Shah at The Donald Danforth Plant Science Center collaborated on a project to develop a variety of corn that is highly resistant to corn smut caused by the fungus, Ustilago maydis. The results of this research are published in the recent article, "Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut," in Plant Biotechnology Journal .

The most economically important crop in the U.S., American farmers planted nearly 90 million acres of corn generating nearly $50 billion in 2010. In addition to food and feed, the current emphasis on biofuels has elevated the importance of corn in U.S. agriculture in recent years.

Corn smut is an airborne fungus found most frequently on ears, tassels and nodes. is more susceptible to corn smut than is seed corn with annual losses often as high as 20% in the U.S. In the U.S. alone, corn smut is responsible for approximately $1 billion in annually (National Corn Growers Association).

The color changes from blue to red as the protein chain goes from the amino to carboxyl termini. The disulfide bonds in the protein are shown in gray. Credit: Donald Danforth Plant Science Center

Prior to the Danforth Center discovery, there were no corn varieties that were naturally immune to Ustilago maydis. Several methods to control the disease have been recommended including, crop rotation, sanitation, seed treatments, application of fungicides and modification of fertility and biological controls. Drs. Smith and Shah explored an alternative approach using a naturally found killer protein, KP4, made by a virus that lives in one specific strain of corn smut.

"This is the only symbiosis I know of in the virus world," said Smith. "Viruses like the common cold and the flu infect the host cell and destroy it after they have reproduced. In contrast, these corn smut viruses cannot leave the cell and the viruses 'know' that the host has to live if they hope to survive. To make sure its captive host lives, this virus, UMV4, makes a protein that is exported from the host cell and will kill off the other strains of corn smut trying to infect the same ear of corn. It's an infection of an infection; the corn smut infects the corn, the virus infects the smut, and virus produces the KP4 protein to kill competing fungi, and thus insuring the host will outcompete other corn smut strains. With our genetically modified corn, the plants are producing so much KP4 protein, that the corn smut strains commonly found in the field are killed by the plant before they get a chance to establish an infection."

“Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut,” in Plant Biotechnology Journal. Credit: Donald Danforth Plant Science Center

Toxicity studies have shown that the KP4 proteins are safe for humans and animals to consume. Smith and Shah will continue to explore KP4 and other antifungal proteins ability to control other pathogenic fungi.

"Applying our control method could significantly reduce annual losses caused by corn smut and other ," said Smith. Plants often require a number of genes to only partially protect the plant from a particular fungal infection, making it difficult to use traditional breeding methods to develop resistant lines. Here we have shown that a single gene that can lend extremely robust protection, giving us hope that there are other similar and effective solutions to be found in nature."

Explore further: How sweet it is: New tool for characterizing plant sugar transporters

Provided by Donald Danforth Plant Science Center

4 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Seeds of aflatoxin-resistant corn lines available

May 20, 2010

Six new corn inbred lines with resistance to aflatoxin contamination have been found to be free of seed-borne diseases foreign to the United States, and seeds of these lines are now available in the United States for further ...

Doubling a gene in corn results in giant biomass

Mar 02, 2009

University of Illinois plant geneticist Stephen Moose has developed a corn plant with enormous potential for biomass, literally. It yields corn that would make good silage, Moose said, due to a greater number of leaves and ...

Corn lines resist fungal toxins

Sep 03, 2010

(PhysOrg.com) -- Corn germplasm lines developed by U.S. Department of Agriculture (USDA) scientists are scoring high marks in field trials for resistance to aflatoxin produced by Aspergilllus flavus and A. ...

Recommended for you

Getting a jump on plant-fungal interactions

7 hours ago

Fungal plant pathogens may need more flexible genomes in order to fully benefit from associating with their hosts. Transposable elements are commonly found with genes involved in symbioses.

The microbes make the sake brewery

Jul 24, 2014

A sake brewery has its own microbial terroir, meaning the microbial populations found on surfaces in the facility resemble those found in the product, creating the final flavor according to research published ahead of print ...

User comments : 0