A surprising new vehicle for drug delivery?

March 30, 2011
Fighting the war against pollutants

(PhysOrg.com) -- Are our bodies vulnerable to some pollutants whose lack of solubility in water, or "hydrophobicity," has always been thought to protect us from them? New Tel Aviv University research has discovered that this is indeed the case.

Studies by Dr. Michael Gozin of Tel Aviv University's School of Chemistry at the Raymond and Beverly Sackler Faculty of Exact Sciences and Dr. Dan Peer of TAU's Laboratory of in the Department of Cell Research and Immunology have revealed that — the thick substance lining those internal bodily organs that come into contact with the outer environment, such as the respiratory system, the digestive system, and the female reproductive system — may instead play an active role in the penetration of hydrophobic substances, including toxins and carcinogens, into our cells.

But encouragingly, the researchers believe that their discovery will one day prove useful in enabling non-water-soluble drugs to enter cells and treat diseases such as cancer. Their most recent study was published in the American Chemical Society's Chemical Research in Toxicology journal.

When mucus fails

Some of these dangerous substances, such as polycyclic aromatic hydrocarbons, are present in petroleum products and also formed through the partial combustion of fossil fuels that are used to operate power stations, planes, cars, space heaters, and stoves. In the new publication, Drs. Gozin and Peer describe their success in getting certain substances, some of them toxic, to penetrate digestive-system cell cultures and bacterial cells bathed in a mucus solution.

"Until now, mucus has been regarded as a mechanical and chemical protective membrane. We did not expect to find it actually absorbing these toxic hydrocarbons and facilitating their transport into bodily systems," explains Dr. Gozin.

Dr. Gozin, Dr. Peer and their research teams show that petroleum-based toxins can dissolve in water with the aid of mucins, the proteins that constitute the main component of mucus.

A new drug delivery system?

In their laboratory, Drs. Gozin and Peer bathed single-celled organisms in a solution of the hydrocarbon-mucin complex, and observed that the hydrocarbons penetrated the cells much more rapidly than when no mucins were present. "We do not know what mechanism enables these substances to penetrate the cell membranes. Clearly it is not a simple infiltration. Our assumption is that an endocytosis-like process is at work — substances are being absorbed into the cell through entrapment, with the cell membrane folding in on itself and creating a bubble," Dr. Gozin explains.

In an earlier study, published in 2010 in the nanotechnology journal Small, Dr. Gozin's team demonstrated that nanometer-scale substances such as carbon-based and inorganic fullerenes (ball-shaped nanoparticles) as well as carbon nanotubes can also be dispersed in physiological solutions with the aid of mucins.

"It will be possible to employ the mechanism we have discovered to facilitate the penetration of hydrophobic drugs into the body, whether via the respiratory tract — with drugs entering the body through the lungs — or by swallowing a delayed-release drug formulation to be absorbed by the digestive system beyond the stomach," Dr. Gozin notes. The next stage of the research will focus on developing systems for the transport of hydrophobic drugs.

Explore further: Breaking the 'mucus barrier' with a new drug delivery system

Related Stories

Breaking the 'mucus barrier' with a new drug delivery system

August 20, 2008

Chemical engineers from Johns Hopkins University have broken the "mucus barrier," engineering the first drug-delivery particles capable of passing through human mucus — regarded by many as nearly impenetrable — and carrying ...

A fantastic voyage brought to life

January 15, 2009

Ever since the 1966 Hollywood movie, doctors have imagined a real-life Fantastic Voyage -- a medical vehicle shrunk small enough to "submarine" in and fix faulty cells in the body. Thanks to new research by Tel Aviv University ...

Evil-doers everywhere: Get a whiff of this

February 18, 2009

The food you eat, the drugs you take, your state of mind, and your gender -- all these make your sweat unique. Tel Aviv University chemists may turn this fact into a new crime-fighting tool that would make Sherlock Holmes ...

'Buckyballs' to treat multiple sclerosis

March 19, 2009

If you're of a certain age, you'll remember Buckminster Fuller's distinctive "geodesic domes" - soccer-ball-shaped structures that the late futurist envisioned as ideal human domiciles. Tel Aviv University chemists remember ...

A dirty job but ...

April 13, 2009

Byproducts from the electronics, fuel, chemical and defense industries can be far from benign. Toxic heavy metals like cadmium and lead can seep into our food chain and cause cancer. And if found in the soil, these dangerous ...

Recommended for you

New chemistry makes strong bonds weak

July 28, 2015

Researchers at Princeton have developed a new chemical reaction that breaks the strongest bond in a molecule instead of the weakest, completely reversing the norm for reactions in which bonds are evenly split to form reactive ...

Making polymers from a greenhouse gas

July 28, 2015

A future where power plants feed their carbon dioxide directly into an adjacent production facility instead of spewing it up a chimney and into the atmosphere is definitely possible, because CO2 isn't just an undesirable ...

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.