Ultra fast photodetectors out of carbon nanotubes

Mar 07, 2011
Single-walled carbon nanotubes are promising building blocks for future optoelectronic devices. With this measurement set-up physicists led by Professor Alexander Holleitner (Technische Universitaet Muenchen) can resolve the ultra fast optoelectronic dynamics of carbon-nanotubes. A first laser exites electrons in the carbon-nanotubes spanning the gap between two gold electrodes while a second laser measures the resulting photo-current. Credit: Prof. Dr. A. Holleitner, TUM

Single-walled carbon nanotubes are promising building blocks for future optoelectronic devices. But conventional electronic measurements were not able to resolve the ultra fast optoelectronic dynamics of the nanotubes. Now German scientists led by Professor Alexander Holleitner, physicist at the Technische Universitaet Muenchen, have found a way to directly measure the dynamics of photo-excited electrons in nanoscale photodetectors.

Carbon nanotubes have a multitude of unusual properties which make them promising candidates for optoelectronic components. However, so far it has proven extremely difficult to analyze or influence their optic and electronic properties. A team of researchers headed by Professor Alexander Holleitner, a physicist at the Technische Universitaet Muenchen and member of the Cluster of Excellence Nanosystems Munich (NIM), has now succeeded in developing a measurement method allowing a time-based resolution of the so-called photocurrent in photodetectors with picosecond precision.

"A picosecond is a very small time interval," explains Alexander Holleitner. "If electrons traveled at the speed of light, they would make it almost all the way to the moon in one second. In a picosecond they would only cover about a third of a millimeter." This new is about a hundred times faster than any existing method. It allowed the scientists headed by Professor Alexander Holleitner to measure the precise speed of electrons. In the carbon nanotubes the electrons only cover a distance of about 8 ten-thousandths of a millimeter or 800 nanometers in one picosecond.

At the heart of the photodetectors in question are carbon tubes with a diameter of about one nanometer spanning a tiny gap between two gold detectors. The physicists measured the speed of the electrons by means of a special time-resolved process – the pump-probe technique. It works by exciting electrons in the by means of a laser pulse and observing the dynamics of the process using a second laser.

The insights and analytic opportunities made possible by the presented technique are relevant to a whole range of applications. These include, most notably, the further development of optoelectronic components such as nanoscale photodetectors, photo-switches and solar cells.

Explore further: Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch

More information: Time-Resolved Picosecond Photocurrents in Contacted Carbon Nanotubes, Leonhard Prechtel, Li Song, Stephan Manus, Dieter Schuh, Werner Wegscheider, Alexander W. Holleitner, Nano Letters 2011, 11 (1), pp 269, DOI:10.1021/nl1036897

Provided by Technische Universitaet Muenchen

5 /5 (4 votes)

Related Stories

Plasma as a fast optical switch

Nov 08, 2010

Laser uses relativistic effects to turn otherwise opaque plasma transparent, creating an ultra-fast optical switch useful in next-generation particle accelerators.

Sandia researcher examines the physics of carbon nanotubes

May 01, 2008

Carbon nanotubes, described as the reigning celebrity of the advanced materials world, are all the rage. Recently researchers at Rice University and Rensselaer Polytechnic Institute used them to make the “blackest ...

Recommended for you

For electronics beyond silicon, a new contender emerges

Sep 16, 2014

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

Sep 16, 2014

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

Sep 16, 2014

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

User comments : 0