Stem cell therapy for age-related macular degeneration -- a step closer to reality

Mar 24, 2011

The notion of transplanting adult stem cells to treat or even cure age-related macular degeneration has taken a significant step toward becoming a reality. In a study published today in Stem Cells, Georgetown University Medical Center researchers have demonstrated, for the first time, the ability to create retinal cells derived from human-induced pluripotent stem cells that mimic the eye cells that die and cause loss of sight.

Age-related (AMD) is a leading cause of and in older Americans and worldwide. AMD gradually destroys sharp, central vision needed for seeing objects clearly and for common daily tasks such as reading and driving. AMD progresses with death of retinal pigment epithelium (RPE), a dark color layer of cells which nourishes the visual cells in the .

While some treatments can help slow its progression, there is no cure. The discovery of human induced pluripotent stem (hiPS) cells has opened a new avenue for the treatment of degenerative diseases, like AMD, by using a patient's own to generate tissues and cells for transplantation.

For transplantation to be viable in age-related macular degeneration, researchers have to first figure out how to program the naïve hiPS cells to function and possess the characteristics of the native retinal pigment epithelium, RPE, the cells that die off and lead to AMD.

The research conducted by the Georgetown scientists shows that this critical step in regenerative medicine for AMD has greatly progressed.

"This is the first time that hiPS-RPE cells have been produced with the characteristics and functioning of the RPE cells in the eye. That makes these cells promising candidates for retinal regeneration therapies in age-related macular degeneration," says the study's lead author Nady Golestaneh, Ph.D., assistant professor in GUMC's Department of Biochemistry and Molecular & Cellular Biology.

Using an established laboratory stem cell line, Golestaneh and her colleagues show that RPE generated from hiPS cells under defined conditions exhibit ion transport, membrane potential, polarized VEGF secretion and gene expression profile similar to those of a normal eye's RPE.

"This isn't ready for prime time though. We also identified some issues that need to be worked out before these cells are ready for transplantation but overall, this is a tremendous step forward in regenerative medicine," Golestaneh adds.

She explains that the hiPS-derived RPE cells show rapid telomere shortening, DNA chromosomal damage and increased p21 expression that cause cell growth arrest. This might be due to the random integration of viruses in the genome of skin fibroblasts during the reprogramming of iPS cells. Therefore, generation of viral-free iPS cells and their differentiation into RPE will be a necessary step towards implementation of these cells in clinical application, Golestaneh says.

"The next step in this research is to focus on a generation of 'safe' as well as
viable hiPS-derived somatic cells," Golestaneh concludes.

Explore further: New compounds protect nervous system from the structural damage of MS

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Mystery of the reverse-wired eyeball solved

22 hours ago

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

22 hours ago

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

Quality control for adult stem cell treatment

Feb 27, 2015

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.