Solar cells will be fabricated by a single organic semiconductor

Mar 29, 2011 By Mikiko Tanifuji

The fabrication of organic thin-film solar cells has been simplified due to new research findings. Where previously two types of organic semiconductors were required, doping the semiconductor fullerene with molybdenum oxide renders the use of phthalocyanine unneccessary.

The Institute for Molecular Science, National Institute of Natural Sciences announced on March 3, 2011 that a research group led by Professor Masahiro Hiramoto has succeeded in converting conduction-type of from n- to p-type by molybdenum oxide (MoO3) doping. Details are published online in Applied Physics Letters on February 28, 2011.

Although organic thin-film solar cells are promising devices because of the advantages of being light weight, flexible and low cost, the conduction-type of organic semiconductors has not been controlled by doping as is done in silicon. Two species of organic semiconductors, n-type fullerene (C60) and p-type phthalocyanine (Pc), need to be used to form built-in fields in solar cells.

Researchers noticed that MoO3 is used to raise holes in organic electroluminescent materials. They have succeeded in converting conduction-type of C60 from n- to p-type by co-evaporation of MoO3 and C60. Energetic value of the Fermi level, 4.60eV, for nondoped C60 films measured by the Kelvin vibrating method was positively shifted to 5.88 eV by the co-evaporated doping of MoO3 at a concentration of 3300 ppm and approached the valence band of located at 6.4 eV. The upward bending of energy band in the Schottky junction formed at the interface between a metal (silver, Ag) and p-type C60 film formed by MoO3 doping was confirmed based on the photovoltaic properties. could be fabricated by a single material - fullerene C60.

Explore further: Graphene and diamonds prove a slippery combination

More information: Masayuki Kubo, et al. "Conduction-type control of fullerene films from n- to p-type by molybdenum oxide doping", Applied Physics Letters Vol.98, No. 7, p. 073311 (2011); doi:10.1063/1.3556312 (3 pages); published online 18 February 2011.

Related Stories

Buckyballs Can Be Nontoxic... Maybe

Jan 09, 2006

Buckminsterfullerene, a form of carbon containing 60 atoms arranged like the facets of a soccer ball and one of the first and best studied nanoscale structures, has come under scrutiny in recent years over concerns ...

Sunny Record: Breakthrough for Hybrid Solar Cells

Feb 02, 2010

German scientists at the Department of Microsystems Engineering (IMTEK) and the Freiburg Materials Research Center (FMF) have succeeded in developing a method for treating the surface of nanoparticles which ...

Organic Molecules Stay on Top

Nov 19, 2007

The van der Waals force, a weak attractive force, is solely responsible for binding certain organic molecules to metallic surfaces. In a model for organic devices, it is this force alone that binds an organic film to a metallic ...

Recommended for you

Graphene and diamonds prove a slippery combination

May 25, 2015

Scientists at the U.S. Department of Energy's Argonne National Laboratory have found a way to use tiny diamonds and graphene to give friction the slip, creating a new material combination that demonstrates ...

Artificial muscles get graphene boost

May 22, 2015

Researchers in South Korea have developed an electrode consisting of a single-atom-thick layer of carbon to help make more durable artificial muscles.

How to make continuous rolls of graphene

May 21, 2015

Graphene is a material with a host of potential applications, including in flexible light sources, solar panels that could be integrated into windows, and membranes to desalinate and purify water. But all ...

Carbon nanothreads from compressed benzene

May 20, 2015

A new carbon nanomaterial – the thinnest possible one-dimensional thread that still retains a diamond-like structure – was created by the controlled, slow compression and decompression of benzene. The ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.