Solar cells will be fabricated by a single organic semiconductor

March 29, 2011 By Mikiko Tanifuji

The fabrication of organic thin-film solar cells has been simplified due to new research findings. Where previously two types of organic semiconductors were required, doping the semiconductor fullerene with molybdenum oxide renders the use of phthalocyanine unneccessary.

The Institute for Molecular Science, National Institute of Natural Sciences announced on March 3, 2011 that a research group led by Professor Masahiro Hiramoto has succeeded in converting conduction-type of from n- to p-type by molybdenum oxide (MoO3) doping. Details are published online in Applied Physics Letters on February 28, 2011.

Although organic thin-film solar cells are promising devices because of the advantages of being light weight, flexible and low cost, the conduction-type of organic semiconductors has not been controlled by doping as is done in silicon. Two species of organic semiconductors, n-type fullerene (C60) and p-type phthalocyanine (Pc), need to be used to form built-in fields in solar cells.

Researchers noticed that MoO3 is used to raise holes in organic electroluminescent materials. They have succeeded in converting conduction-type of C60 from n- to p-type by co-evaporation of MoO3 and C60. Energetic value of the Fermi level, 4.60eV, for nondoped C60 films measured by the Kelvin vibrating method was positively shifted to 5.88 eV by the co-evaporated doping of MoO3 at a concentration of 3300 ppm and approached the valence band of located at 6.4 eV. The upward bending of energy band in the Schottky junction formed at the interface between a metal (silver, Ag) and p-type C60 film formed by MoO3 doping was confirmed based on the photovoltaic properties. could be fabricated by a single material - fullerene C60.

Explore further: Sharp to Begin Mass-Production of Thin-Film Photovoltaic Modules

More information: Masayuki Kubo, et al. "Conduction-type control of fullerene films from n- to p-type by molybdenum oxide doping", Applied Physics Letters Vol.98, No. 7, p. 073311 (2011); doi:10.1063/1.3556312 (3 pages); published online 18 February 2011.

Related Stories

Buckyballs Can Be Nontoxic... Maybe

January 9, 2006

Buckminsterfullerene, a form of carbon containing 60 atoms arranged like the facets of a soccer ball and one of the first and best studied nanoscale structures, has come under scrutiny in recent years over concerns that it ...

Organic Molecules Stay on Top

November 19, 2007

The van der Waals force, a weak attractive force, is solely responsible for binding certain organic molecules to metallic surfaces. In a model for organic devices, it is this force alone that binds an organic film to a metallic ...

Sunny Record: Breakthrough for Hybrid Solar Cells

February 2, 2010

German scientists at the Department of Microsystems Engineering (IMTEK) and the Freiburg Materials Research Center (FMF) have succeeded in developing a method for treating the surface of nanoparticles which greatly improves ...

Recommended for you

Better together: graphene-nanotube hybrid switches

August 2, 2015

Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological ...

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.