Silicon, nitride LEDs integrated onto a single chip for one-bit digital counters

Mar 25, 2011 By Adarsh Sandhu
Silicon, nitride LEDs integrated onto a single chip for one-bit digital counters
One-bit counter consisting of a p-MOSFET and GaPN light emitting diode

Silicon-based semiconductor devices dominate the microelectronics industry and are used for the fabrication of high density integrated circuits comprising of memory and processing devices. However, silicon has an indirect band gap, which severely limits its use for fabricating photonic devices such as light emitting diodes (LEDs) and lasers.

An innovative solution to this problem would be the integration of silicon devices with LEDs produced using direct compound semiconductors, in the form of optoelectronic integrated circuits (OEICs).

Silicon, nitride LEDs integrated onto a single chip for one-bit digital counters
Transmission electron microscope image showing the n-Si/p-GaPN/n-GaPN/GaP/Si heterostructure

Here, Akihiro Wakahara and colleagues at Toyohashi University of Technology (Toyohashi Tech) demonstrate the first realization of a one-bit counter circuit OEIC with an optical output consisting of silicon integrated with gallium phosphide nitride (GaPN) LEDs on a single chip.

The monolithic integrated circuits were fabricated using lattice matched Si/GaPN/Si heterostructures grown on silicon substrates in a dual chamber molecular beam epitaxy (MBE) system. Notably, growth of the silicon capping layer at a high temperature of 850℃ led to a dramatic reduction of the threshold voltage to -2.1 V and an increase of the channel mobility of the p-MOSFET to 82 cm2Vs. This improvement is attributed to a decrease in phosphorus incorporation during the growth of the capping layer.

a) Circuit diagram of the one-bit counter; (b) Optical image of an actual circuit; (c) Synchronization of the LED emission with input and output circuit voltages

The one-bit counter circuit fabricated using the n-Si/p-GaPN/n-GaPN/GaP/n-Si heterostructure exhibited normal operation, where red light emission from the input and output indicators was in synchronization with the input and output logical voltages.

Explore further: Multilayer varistors provide high surge current capability in a very compact design

More information: K.Yamane, et al. Operation of Monolithically-Integrated Digital Circuits with Light Emitting Diodes Fabricated in Lattice-Matched Si/III–V–N/Si Heterostructure. Applied Physics Express 3, 074201, (2010), DOI: 10.1143/APEX.3.074201

Related Stories

Stress Management: X-Rays Reveal Si Thin-Film Defects

Jul 06, 2006

Pile-ups, bad on the freeway, also are a hazard for the makers of high-performance strained-silicon semiconductor devices. A sensitive X-ray diffraction imaging technique developed by researchers at the National Institute ...

Recommended for you

Solar Impulse 2 pilot becomes aviation legend

Jul 04, 2015

At 62 years of age, Swiss Solar Impulse 2 pilot Andre Borschberg has made aviation history with a record breaking solo flight across the Pacific that he has called "an interior journey".

Facegloria: Facebook for Brazil's Evangelicals

Jul 04, 2015

Fluffy clouds waft across a blue sky as you log in and while you chat with friends, Gospel music rings out: welcome to Facegloria, the social network for Brazilian Evangelicals.

Mexico City proposes regulations for Uber

Jul 04, 2015

Mexico City is proposing regulations that would allow Uber and other smartphone-based ride-sharing apps to operate, while requiring drivers and cars to be registered, the city's Office of Legal and Legislative Studies said ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.