Silicon, nitride LEDs integrated onto a single chip for one-bit digital counters

March 25, 2011 By Adarsh Sandhu
Silicon, nitride LEDs integrated onto a single chip for one-bit digital counters
One-bit counter consisting of a p-MOSFET and GaPN light emitting diode

Silicon-based semiconductor devices dominate the microelectronics industry and are used for the fabrication of high density integrated circuits comprising of memory and processing devices. However, silicon has an indirect band gap, which severely limits its use for fabricating photonic devices such as light emitting diodes (LEDs) and lasers.

An innovative solution to this problem would be the integration of silicon devices with LEDs produced using direct compound semiconductors, in the form of optoelectronic integrated circuits (OEICs).

Silicon, nitride LEDs integrated onto a single chip for one-bit digital counters
Transmission electron microscope image showing the n-Si/p-GaPN/n-GaPN/GaP/Si heterostructure

Here, Akihiro Wakahara and colleagues at Toyohashi University of Technology (Toyohashi Tech) demonstrate the first realization of a one-bit counter circuit OEIC with an optical output consisting of silicon integrated with gallium phosphide nitride (GaPN) LEDs on a single chip.

The monolithic integrated circuits were fabricated using lattice matched Si/GaPN/Si heterostructures grown on silicon substrates in a dual chamber molecular beam epitaxy (MBE) system. Notably, growth of the silicon capping layer at a high temperature of 850℃ led to a dramatic reduction of the threshold voltage to -2.1 V and an increase of the channel mobility of the p-MOSFET to 82 cm2Vs. This improvement is attributed to a decrease in phosphorus incorporation during the growth of the capping layer.

a) Circuit diagram of the one-bit counter; (b) Optical image of an actual circuit; (c) Synchronization of the LED emission with input and output circuit voltages

The one-bit counter circuit fabricated using the n-Si/p-GaPN/n-GaPN/GaP/n-Si heterostructure exhibited normal operation, where red light emission from the input and output indicators was in synchronization with the input and output logical voltages.

Explore further: Nanosys Announces Issued Patent Covering Fundamental Nanowire Heterostructures

More information: K.Yamane, et al. Operation of Monolithically-Integrated Digital Circuits with Light Emitting Diodes Fabricated in Lattice-Matched Si/III–V–N/Si Heterostructure. Applied Physics Express 3, 074201, (2010), DOI: 10.1143/APEX.3.074201

Related Stories

Stress Management: X-Rays Reveal Si Thin-Film Defects

July 6, 2006

Pile-ups, bad on the freeway, also are a hazard for the makers of high-performance strained-silicon semiconductor devices. A sensitive X-ray diffraction imaging technique developed by researchers at the National Institute ...

Recommended for you

Interactive tool lifts veil on the cost of nuclear energy

August 24, 2015

Despite the ever-changing landscape of energy economics, subject to the influence of new technologies and geopolitics, a new tool promises to root discussions about the cost of nuclear energy in hard evidence rather than ...

Smart home heating and cooling

August 28, 2015

Smart temperature-control devices—such as thermostats that learn and adjust to pre-programmed temperatures—are poised to increase comfort and save energy in homes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.