Scientists take another step towards quantum computing using flawed diamonds

Mar 29, 2011 by Bob Yirka report

(PhysOrg.com) -- David D. Awschalom, of the Center for Spintronics and Quantum Computation, University of California, Santa Barbara, in a paper published recently in the Bulletin of the American Physical Society, describes a way to connect the laser-induced spinning of an electron in a free (defect) space in a diamond, with a nearby nitrogen atom in its natural state, thus, providing a means for creating a quantum data bit (qubit).

Awschalom's discovery takes advantage of the fact that some have a flaw in them, which at the means are left in the that make up the diamond structure. It is well known that these extra can be made to spin by lasers or even microwaves; what Awschalom did was figure out a way to measure the slight magnetic pull between the free electron and the nucleus of a nearby nitrogen’s atom, all based on the spin of the free electron, and then to use that data to ascertain characteristics of the . And that’s all you need to create a qubit.

It’s been noted that the spin generated by the laser only lasts about a 100 nano-seconds, which granted isn’t very long, but certainly long enough for a high speed computer to perform many calculations. The exceptional thing though is that because the time frame is so short, it would be virtually impossible for anyone to slip in and manipulate the system, thus making a future computer, almost impossible to hack.

To look at the system another way, imagine an array of tops, all spinning for just one second; if you could ascertain the state of something else, say the string that was pulled to cause each top to spin, based purely on the data contained in the spinning top, then you‘d have the equivalent of a qubit; and in , that’s all you really need; well, that and a method for creating an array of just tops, or with the diamond, all defects.

Scientists have for years been intrigued by the idea of a quantum computer; a machine that relies on natural atomic structures and phenomena; such a machine would be able to perform calculations based on existing materials, such as the flaw in a diamond, rather than have to build them from scratch from comparatively bulky materials. Such a machine would dwarf the capabilities of modern computers due to such physical things as the close proximity of atoms relative to one another as compared to the distance data must now travel through micro-processors, much less data I/O channels.

With his paper Awschalom shows an actual example of a real world way to create an environment where cubits can be created, observed, and maybe even used to someday create an actual quantum computer; yet another step in a very long process.

Explore further: Physicists design zero-friction quantum engine

More information: meetings.aps.org/Meeting/MAR11/Event/138902

Related Stories

Turning down the noise in quantum data storage

Jan 19, 2010

Researchers who hope to create quantum computers are currently investigating various methods to store data. Nitrogen atoms embedded in diamond show promise for encoding quantum bits (qubits), but the process ...

Dark spins light up

Oct 25, 2005

Want to see a diamond? Forget the jewellery store - try a physics laboratory. In the November issue of Nature Physics, Ryan Epstein and colleagues demonstrate the power of their microscope for imaging individual nitrogen ...

Physicists set guidelines for qubit candidates

May 04, 2010

(PhysOrg.com) -- To build a quantum computer, it's essential to be able to quickly and efficiently manipulate the quantum states of qubits. The qubits, which are the basic unit of quantum information, can be composed of many ...

Scientists look beyond diamond for quantum computing

Apr 30, 2010

A team of scientists at UC Santa Barbara that helped pioneer research into the quantum properties of a small defect found in diamonds has now used cutting-edge computational techniques to produce a road map for studying defects ...

Single electron reader opens path for quantum computing

Sep 27, 2010

Researchers from University of New South Wales (Australia), University of Melbourne (Australia), and Aalto University (Finland) have succeeded in demonstrating a high-fidelity detection scheme for the magnetic ...

Recommended for you

Physicists design zero-friction quantum engine

Sep 16, 2014

(Phys.org) —In real physical processes, some energy is always lost any time work is produced. The lost energy almost always occurs due to friction, especially in processes that involve mechanical motion. ...

Fluid mechanics suggests alternative to quantum orthodoxy

Sep 12, 2014

The central mystery of quantum mechanics is that small chunks of matter sometimes seem to behave like particles, sometimes like waves. For most of the past century, the prevailing explanation of this conundrum ...

The sound of an atom has been captured

Sep 11, 2014

Researchers at Chalmers University of Technology are first to show the use of sound to communicate with an artificial atom. They can thereby demonstrate phenomena from quantum physics with sound taking on ...

The quantum revolution is a step closer

Sep 11, 2014

A new way to run a quantum algorithm using much simpler methods than previously thought has been discovered by a team of researchers at the University of Bristol. These findings could dramatically bring ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

ClevorTrever
not rated yet Mar 30, 2011
Please learn to punctuate properly.

A comma is not a breathing mark but a clause delimiter.

When you write a sentence, whatever its meaning, it should read grammatically, and sensibly, if clauses delimited by commas are removed. If, when you read a sentence around commas, the sentence doesn't make sense then you have put the commas in the wrong place.

That's the rule.