Scientists offer new insights into early eye evolution

Mar 02, 2011

Scientists at the University of Hawaii at Manoa's Kewalo Marine Laboratory in Honolulu have discovered light-detecting cells in the embryo of a brachiopod, a marine invertebrate, whose organization may be similar to the primitive precursors of the human eye.

As detailed in the research article, “Ciliary photoreceptors in the cerebral eyes of a protostome larva,” published online March 1, 2011, in the BioMed Central open access journal EvoDevo, the organization of these cells is extremely simple, lacking the complex features seen in the eyes of vertebrates, thereby offering a glimpse into the earliest stages of evolution.

Researchers have long hypothesized that the complex human eye evolved from a very simple patch of cells on the surface of a primitive animal, slowly increasing in complexity by adding features such as pigmentation, a lens, and neuronal connections to the brain. To date, however, few examples similar to the earliest stages of this process have been identified.

Drs. Yale Passamaneck and Mark Martindale of Kewalo Marine Laboratory, along with colleagues in Germany and Norway, identified two distinct groups of light-detecting cells in the brachiopod embryo that may provide such examples. Both groups of cells contain light-sensitive cells called ciliary photoreceptors, the same type of cells that are responsible for detection in the human eye.

The researchers found that the eyes of the fully developed brachiopod larva are composed of only two cells—with one of the cells containing a lens to collect light, while the other containing pigments to block light coming from behind the eye. Both cells have connections to a group of neurons called the ganglion, allowing signals produced in response to light to be sent to other parts of the embryo.

Together, this configuration allows the embryo to detect the direction of light and respond to it by changing its swimming behavior. This configuration is the first example in the large group of animals called protostomes (which also includes insects and mollusks), shown to use the ciliary photoreceptors found in human eyes.

Surprisingly, the researchers also found light-sensitive cells very early in the development of the brachiopod, before any neurons had formed, based on the expression of the light-sensitive gene ciliary opsin, which converts light into a chemical signal within the cell. This light-sensitive structure is unprecedented in terms of its morphological simplicity, being composed of only a single layer of cells on the surface of the embryo, and having no neuronal connections to other cells.

These cells likely act individually, autonomously responding to light by changing the pattern of beating of cilia on their surface. This simple organization of non-neuronal light sensitive cells is remarkably similar to what has long been hypothesized as the earliest stage in the evolution of complex eyes.

Said Dr. Passamaneck, lead author of the study, “This research provides a new model for understanding the very earliest stages of eye evolution, how simple cells on the surface of an animal could become able to respond to light, and how these simple could be connected to eventually form something as complex as the ."

Explore further: The dopamine transporter: Researchers study a common link between addiction and neurological disease

Provided by University of Hawaii at Manoa

5 /5 (5 votes)

Related Stories

Lizard’s ‘third eye’ sheds light on how vision evolved

Mar 30, 2006

A primitive third eye found in many types of lizards, used to detect changes in light and dark and to regulate the production of certain hormones, may help explain how vision evolved and how signals are transmitted from the ...

Scientists Uncover Inner Workings of Rare Eye Cells

Jan 27, 2005

Three years ago, Brown University researchers discovered new eye cells – indeed a parallel visual system. Now, in a report in Nature, they explain how these exotic cells harness light energy to do their chief job: setting ...

The difference between eye cells is... sumo?

Mar 09, 2009

Researchers at the Johns Hopkins University School of Medicine and Washington University School of Medicine have identified a key to eye development — a protein that regulates how the light-sensing nerve cells in the retina ...

New Growth in Old Eyes

Aug 24, 2006

Nerve cells in the retinas of elderly mice show an unexpected and purposeful burst of growth late in life, according to researchers at UC Davis.

An 'eye catching' vision discovery

Jul 26, 2009

Nearly all species have some ability to detect light. At least three types of cells in the retina allow us to see images or distinguish between night and day. Now, researchers at the Johns Hopkins School of ...

Recommended for you

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

jmcanoy1860
not rated yet Mar 02, 2011
Good example. Love references for the fight!!
random
not rated yet Mar 04, 2011
Does the eerie quiet on this page mean that the issue has finally been settled once and for all?
Ethelred
not rated yet Mar 05, 2011
It probably means Kevin hasn't seen it. Reality has never stopped him yet.

Ethelred