Scientists discover genetic abnormalities after creation of stem cells

Mar 02, 2011

Dr. Andras Nagy's laboratory at the Samuel Lunenfeld Research Institute of Mount Sinai Hospital and Dr. Timo Otonkoski's laboratory at Biomedicum Stem Cell Center (University of Helsinki), as well as collaborators in Europe and Canada have identified genetic abnormalities associated with reprogramming adult cells to induced pluripotent stem (iPS) cells. The findings give researchers new insights into the reprogramming process, and will help make future applications of stem cell creation and subsequent use safer.

The study was published online today in Nature.

The team showed that the reprogramming process for generating iPS cells (i.e., cells that can then be 'coaxed' to become a variety of cell types for use in regenerative medicine) is associated with inherent DNA damage.

This damage is detected in the form of genetic rearrangements and 'copy number variations,' which are alterations of DNA in which a region of the genome is either deleted or amplified on certain . The variability may either be inherited, or caused by de novo mutation.

"Our analysis shows that these are a result of the reprogramming process itself, which raises the concern that the resultant cell lines are mutant or defective," said Dr. Nagy, a Senior Investigator at the Lunenfeld. "These mutations could alter the properties of the , affecting their applications in studying degenerative conditions and screening for drugs to treat diseases. In the longer term, this discovery has important implications in the use of these cells for replacement therapies in regenerative medicine."

"Our study also highlights the need for rigorous characterization of generated iPS lines, especially since several groups are currently trying to enhance reprogramming efficiency," said Dr. Samer Hussein, a McEwen post-doctoral scientist who initiated these studies with Dr. Otonkoski, before completing them with Dr. Nagy. "For example, increasing the efficiency of reprogramming may actually reduce the quality of the cells in the long run, if genomic integrity is not accurately assessed."

The researchers used a molecular technique called single nucleotide polymorphism (SNP) analysis to study stem cell lines, and specifically to compare the number of copy number variations in both early and intermediate-stage human iPS cells with their respective parental, originating cells.

Drs. Nagy and Otonkoski and their teams found that iPS cells had more genetic abnormalities than their originating cells and embryonic stem cells. Interestingly, however, the simple process of growing the freshly generated iPS cells for a few weeks selected against the highly mutant cell lines, and thus most of the were eventually 'weeded out.'

"However, some of the mutations are beneficial for the cells and they may survive during continued growth," said Dr. Otonkoski, Director and Senior Scientist at the Biomedicum Stem Cell Center.

Stem cells have been widely touted as a source of great hope for use in regenerative medicine, as well as in the development of new drugs to prevent and treat illnesses including Parkinson's disease, spinal cord injury and macular degeneration. But techniques for generating these uniquely malleable cells have also opened a Pandora's Box of concerns and ethical quandaries. Health Canada, the U.S. Food and Drug Administration and the European Union consider stem cells to be drugs under federal legislation, and as such, subject to the same regulations.

"Our results suggest that whole genome analysis should be included as part of quality control of iPS cell lines to ensure that these cells are genetically normal after the reprogramming process, and then use them for disease studies and/or clinical applications," said Dr. Nagy.

"Rapid development of the technologies in genome-wide analyses will make this more feasible in the future," said Dr. Otonkoski. "In addition, there is a need to further explore if other methods might mitigate the amount of DNA damage generated during the generation of stem cells," both investigators agreed.

Explore further: DNA may have had humble beginnings as nutrient carrier

add to favorites email to friend print save as pdf

Related Stories

Researchers make stem cell breakthrough

Mar 01, 2009

In a study to be released on March 1, 2009, Mount Sinai Hospital's Dr. Andras Nagy discovered a new method of creating stem cells that could lead to possible cures for devastating diseases including spinal ...

Cancer stem cells generated by cancer outgrowth

Apr 02, 2009

Scientists have discovered that growing mouse skin cells in spheres can lead to generation of cells with properties of cancer stem cells, even without genetic manipulation of stem cell genes. This unexpected finding, published ...

New type of human stem cell may be more easy to manipulate

Jun 08, 2010

Researchers from the Massachusetts General Hospital Center for Regenerative Medicine (MGH-CRM) and the Harvard Stem Cell Institute have a developed a new type of human pluripotent stem cell that can be manipulated more readily ...

Recommended for you

Research helps identify memory molecules

5 hours ago

A newly discovered method of identifying the creation of proteins in the body could lead to new insights into how learning and memories are impaired in Alzheimer's disease.

Computer simulations visualize ion flux

6 hours ago

Ion channels are involved in many physiological and pathophysiological processes throughout the human body. A young team of researchers led by pharmacologist Anna Stary-Weinzinger from the Department of Pharmacology ...

Neutron diffraction sheds light on photosynthesis

6 hours ago

Scientists from ILL and CEA-Grenoble have improved our understanding of the way plants evolved to take advantage of sunlight. Using cold neutron diffraction, they analysed the structure of thylakoid lipids found in plant ...

DNA may have had humble beginnings as nutrient carrier

Sep 01, 2014

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

Sep 01, 2014

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 0